Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A =\(\frac{\sqrt{x}}{\sqrt{x}+2}=1-\frac{2}{\sqrt{x}+2}\).Để\(A\in Z\Rightarrow\frac{2}{\sqrt{x}+2}\in Z\)mà\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\sqrt{x}+2=2\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
Bạn ko hiểu thì hỏi nhé!
a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))
Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có :
\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)
b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))
Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)
Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có :
\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)
Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)
a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)
b) Theo kết quả câu a) khi x = 1/4 thì A = -1
Vậy x = 1/4
c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.
Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Đến đây bí.
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-5+7}{\sqrt{x}-5}=1+\frac{7}{\sqrt{x}-5}\)
Để A là số nguyên thì \(\frac{7}{\sqrt{x}-5}\) là số nguyên
\(\Rightarrow\sqrt{x}-5\in\left\{1;7;-1;-7\right\}\)
Auto làm nốt
Ta có :\(\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)
để A có giá trị nguyên thi \(\sqrt{x}+3\inƯ\left(8\right)\)
KẺ BẢNG TÌM GIÁ TRỊ x =1, 25
Mình sửa đề, căn x thôi nha chứ ko phải căn x+2 với căn x-3 đâu
\(ĐK:\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
Ta có : \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)
Để A nguyên thì \(\frac{5}{\sqrt{x}-3}\)nguyên hay \(\sqrt{x}-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
đến đây thì dễ rồi bạn tự lập bảng xét nhé ;)
a) Có \(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)
Để A đạt giá trị nguyên thì: \(\sqrt{x}-2\in U\left(4\right)\)
TH1: \(\sqrt{x}-2=1\Rightarrow x=9\)
TH2: \(\sqrt{x}-2=-1\Rightarrow x=1\)
TH3: \(\sqrt{x}-2=2\Rightarrow x=16\)
TH4: \(\sqrt{x}-2=-2\Rightarrow x=0\)
TH5: \(\sqrt{x}-2=4\Rightarrow x=36\)
TH6: \(\sqrt{x}-2=-4\Rightarrow\) k tồn tại x
Vậy:...
\(A=\frac{\sqrt{x}}{\sqrt{x}+2}=1-\frac{2}{\sqrt{x}+2}\)
Để \(A\in Z\) , thì :
\(\Rightarrow\frac{2}{\sqrt{x}+2}\in Z\)
Mà : \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}+2\ge2\)
\(\Rightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)
Vậy .....................
10