Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(A=-\frac{7}{12}+\frac{12}{18}+\frac{5}{4}\)
\(=-\frac{7}{12}+\frac{2}{3}+\frac{5}{4}\)
\(=-\frac{7}{12}+\frac{8}{12}+\frac{15}{12}\)
\(=\frac{-7+8+15}{12}\)
\(=\frac{4}{3}\)
\(1,\)
\(B=\frac{1}{4}-\frac{8}{7}:8-3:\frac{3}{4}.\left(-2\right)^2\)
\(=\frac{1}{4}-\frac{8}{7}.\frac{1}{8}-3.\frac{4}{3}.4\)
\(=\frac{1}{4}-\frac{1}{7}-16\)
\(=\frac{7-4-448}{28}\)
\(=-\frac{445}{28}\)
Mình đang bận, bạn cần gấp thế à? Trả lời trong tin nhắn nhé!!!
1) \(-x-3=-2\left(x+7\right)\\ \Rightarrow-x-3=-2x-14\\ \Rightarrow-x+2x=-14+3\\ \Rightarrow x=-11\)
2) \(A=\frac{12}{\left(x+1\right)^2+3}\\ Tac\text{ó}:\left(x+1\right)^2\ge0\\ \Rightarrow\left(x+1\right)^2+3\ge3\\ \Rightarrow A\le\frac{12}{3}=4\)
Max A=4 khi x=-1
3) Đăt : \(n^2+4=k^2\\ \Rightarrow k^2-n^2=4\\ \Rightarrow\left(k-n\right)\left(k+n\right)=4\)
lập bang ra rồi tính
(2x+1) . (3y -2)=-5
=> 2x+1 \(\in\)Ư(-5) = { 1; 5; -1; -5}
=> 2x \(\in\){ 0; 6; -2; -6}
=> x \(\in\){ 0; 3; -1; -3}
Sau bn tự thay nha
\(\left(2x+1\right)\left(3y-2\right)=5\)
Do x,y nguyên => 2x+1; 3y-2 nguyên
=> 2x+1; 3y-2\(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
2x+1 | -5 | -1 | 1 | 5 |
3y-2 | -1 | -5 | 5 | 1 |
x | -3 | -1 | 0 | 2 |
y | \(\frac{1}{3}\) | -1 | \(\frac{7}{3}\) | 1 |
Vậy (x;y)=(-1;-1);(2;1)
1,1/3+1/2:X= -4
1/2:X= -4-1/3
1/2:X= -13/3
X=1/2 : -13/3
X= -3/26
1. 1/3 + 1/2 : x = -4
=> 1/2 : x = -4 - 1/3
1/2 : x = -13/3
=> x = 1/2 : (-13/3)
x = -3/26
2. 3x - 30%.x = -5,4
3x - x = -18
2x = -18
=> x = -18 : 2
x = -9
a) \(\left(x-5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\left\{\pm3\right\}\end{cases}}\)
Vậy........
b) \(x\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Vậy......
a) \(\left|2x+1\right|-19=-7\)
\(\Rightarrow\left|2x+1\right|=12\)
\(\Rightarrow\orbr{\begin{cases}2x+1=12\\2x+1=-12\end{cases}\Rightarrow}\orbr{\begin{cases}2x=11\\2x=-13\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=\frac{13}{2}\end{cases}}}\)
Vậy \(x\in\left\{\frac{11}{2};\frac{13}{2}\right\}\)
a,\(/2x+1/-19=-7\)
\(=>/2x+1/=-7+19=12\)
\(=>\orbr{\begin{cases}2x+1=12\\2x+1=-12\end{cases}}\)
\(=>\orbr{\begin{cases}x=\frac{12-1}{2}=\frac{11}{2}\\x=\frac{-12-1}{2}=-\frac{13}{2}\end{cases}}\)
b,\(12-2\left(-x+3\right)^2=-38\)
\(=>2\left(-x+3\right)^2=12+38=50\)
\(=>\left(-x+3\right)^2=\frac{50}{2}=25=\pm5^2\)
\(=>\orbr{\begin{cases}-x+3=5\\-x+3=-5\end{cases}}=>\orbr{\begin{cases}-x=2\\-x=-8\end{cases}=>\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)