K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2015

a)*Xét p=2=>p+2=4 là hợp số(loại)

*Xét p=3=>p+2=5

                   p+4=7(thoả mãn)

*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2

-Với p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số(loại)

-Với p=3k+2=>p+4=3k+2+4=3k+6=3.(k+2) là hợp số(loại)

Vậy p=3 thoả mãn đề bài.

b)*Xét p=2=>p+10=12 là hợp số(loại)

*Xét p=3=>p+10=13

                   p+14=17(thoả mãn)

*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2

-Với p=3k+1=>p+14=3k+1+14=3k+15=3.(k+5) là hợp số(loại)

-Với p=3k+2=>p+10=3k+2+10=3k+12=3.(k+4) là hợp số(loại)

Vậy p=3 thoả mãn đề bài.

30 tháng 10 2015

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

Do đó 4p + 1 là hợp số (.)

tick nhé

30 tháng 10 2015

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

11 tháng 8 2017

a) p = 1 vì 1 + 2 = 3 , 3 > 1 và 3 \(⋮\) 1 và 3.

p = 1 vì 1 + 4 = 5 , 5 > 1 và 5 \(⋮\)1 và 5.

b) p = 1 vì 10 + 1 = 11, 11 > 1 và 11 \(⋮\) 1 và 11

p = 5 vì 5 + 14 = 19 , 19 > 1 và 19 \(⋮\) 1 và 19

24 tháng 6 2019

a) p = 1 vì 1 + 2 = 3 , 3 > 1 và 3 ⋮ 1 và 3.

p = 1 vì 1 + 4 = 5 , 5 > 1 và 5 ⋮ 1 và 5.

b) p = 1 vì 10 + 1 = 11, 11 > 1 và 11 ⋮ 1 và 11

p = 5 vì 5 + 14 = 19 , 19 > 1 và 19 ⋮ 1 và 19

4 tháng 11 2015

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 ( k thuộc N)

nếu p = 3k+1 thì p+8 = (3k+1)+8 = 3k+9=3.(k+3) chia hết cho 3 (loại)

nếu p = 3k+2 thì p+8 = (3k+2)+9 = 3k +10 có thể là số nguyên tố (chọn)

khi đó p+10= (3k+2)+100=3k+102=3.(k+34) chia hết cho 3

Vậy là hợp số

26 tháng 3 2016

Vì P > 3 nên P = 3k + 1 hoặc P = 3k + 2.

+Với P = 3k + 1 thì P + 8 = 3k + 1 + 8 = 3k + 9 = 3.( k + 3) chia hết cho 3.

       Vì P + 8 vhia hết cho 3 mà P + 8 > 3 nên P + 8 là hợp số ( loại ) 

+ Với P = 3k + 2 thì P + 100 = 3k + 2 +100 = 3k + 102 =3. (k + 34) chia hết cho 3.

      Vì P + 100 chia hết cho 3 mà P + 100 > 3 nên P + 100 là hợp số.

         Vậy với P và P + 8 là số nguyên tố ( P > 3) thì P + 100 là hợp số.

25 tháng 7 2016

A) B = 3

b) B = 11

25 tháng 7 2016

a) b= 3

b)b=5

22 tháng 11 2021

ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc 

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

20 tháng 12 2015

ai tick cho tui với à

ai làm chi tiết cho mik đi mik tick người đó 5 li-ke