Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Số p có một trong ba dạng : 3k , 3k+1 , 3k+2 (k thuộc N*)
Nếu p = 3k thì p = 3 ( Vì p là số nguyên tố ) , khi đó p+2 = 5 , p+4 = 7 đều là số nguyên tố
Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số ( loại )
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số ( loại )
Vậy p = 3
Nếu p = 2 thì p + 8 = 2 + 8 = 10 (là hợp số \(\Rightarrow\) p = 2 loại)
Nếu p = 3 thì p + 8 = 3 + 8 = 11 ( là số nguyên tố \(\Rightarrow\) chọn)
p + 10 = 3 + 10 = 13 ( là số nguyên tố \(\Rightarrow\) chọn)
Nếu p \(\ge\) 3 thì p có dạng: 3k+1 và 3k+2
Nếu p = 3k+1 thì p + 8 = 3k+1 + 8 = 3k + 9 chia hết cho 3 (là hợp số \(\Rightarrow\) p = 3k+1 loại)
Nếu p = 3k+2 thì p + 10 = 3k+2 + 10 = 3k + 12 chia hết cho 3 (là hợp số \(\Rightarrow\) p = 3k+2 loại)
Vậy p = 3
giai cu the di cac ban giai nhanh cu the roi tick cho nhe
TH1: p=3
=>p+8=11; p+10=13
=>Nhận
TH2: p=3k+1
=>p+8=3k+9(loại)
TH3: p=3k+2
=>p+10=3k+12(loại)
. Nếu p = 0 thì 0 + 8 = 8 và 0 + 10 = 10, 8 và 10 không cùng nguyên tố ( loại )
. Nếu p = 1 thì 1 + 8 = 9 và 1 + 10 = 11, 9 và 11 không cùng nguyên tố ( loại )
. Nếu p = 2 thì 2 + 8 = 10 và 2 + 10 = 12, 10 và 12 không cùng nguyên tố ( loại )
. Nếu p = 3 thì 3 + 8 =11 và 3 + 10 = 13 , 11 và 13 cùng nguyên tố ( chọn )
Vậy p = 3
Nếu p = 2
=> p + 8 = 2 + 8 = 10 (hợp số)
=> loại
Nếu p = 3
=> p + 8 = 3 + 8 = 11 (số nguyên tố)
=> p + 10 = 3 + 10 = 13 (số nguyên tố)
=> p = 3 chọn
Nếu p > 3
=> p \(\in\){3k + 1 ; 3k + 2}
Nếu p = 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3k + 3.3 = 3(k + 3) \(⋮\)3 (hợp số)
=> p = 3k+ 1 loại
Nếu p = 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3k + 3.4 = 3(k + 4) \(⋮\)3(hợp số)
=> p = 3k + 2 loại
Vậy p = 3