Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(p=2\)thì \(p+6=8\)không là số nguyên tố.
Với \(p=3\)thì \(p+6=9\)không là số nguyên tố.
Với \(p=5\)thì tất cả các số \(p+6;p+8;p+12;p+14\)đều là số nguyên tố.
Với \(p>5\)thì p được biểu diễn dưới dạng \(p=5k\pm1\)hoặc dưới dạng \(p=5k\pm2\)
Nếu \(p=5k+1\)thì \(p+14=5k+15=5\left(k+3\right)\)không là số nguyên tố.
Nếu \(p=5k+2\)thì \(p+8=5k+10=5\left(k+2\right)\)không là số nguyên tố.
Nếu \(p=5k+3\)thì \(p+12=5k+15=5\left(k+3\right)\)không là số nguyên tố.
Nếu \(p=5k+4\)thì \(p+6=5k+10=5\left(k+2\right)\)không là số nguyên tố.
Do đó nên p chỉ có thể bằng 5.
p+6, p+8, p+12, p+14 nguyên tố
p = 5k+r
xét như trên thấy r không thể là 1, 2, 3,4
r = 0 => p = 5k nguyên tố => p = 5
các số là 5, 11,13,17,19 nguyên tố
*Xét p=3=>p+2=4 là hợp số(loại)
*Xét p=3=>p+12=15 là hợp số(loại)
*Xét p=5=>p+6=11
p+8=13
p+12=17
p+14=19(thoả mãn)
*Xét p>5=>p có 4 dạng là 5k+1, 5k+2,5k+3 và 5k+4
-Với p=5k+1=>p+14=5k+1+14=5k+15=5.(k+3) là hợp số(loại)
-Với p=5k+2=>p+8=5k+2+8=5k+10=5.(k+0) là hợp số(loại)
-Với p=5k+3=>p+2=5k+3+2=5k+5=5.(k+1) là hợp số(loại)
-Với p=5k+4=>p+=5k+4+6=5k+10=5.(k+2) là hợp số(loại)
Vậy p=5 thoả mãn đề bài.
tớ chỉ biết làm phần d thôi
Vì p là số nguyên tố nên \(\Rightarrow\) p có dạng 3k,3k+1,3k+2
+) Nếu p =3k \(\Rightarrow\)p =3 thì p+2=3+2=5
p+4=3+4=7 là số nguyên tố (chọn)
+) Nếu p=3k+1 \(\Rightarrow\) p+2 =(3k+3) \(⋮\)3 là hợp số (loại)
+) Nếu p=3k+2 \(\Rightarrow\)p+4=(3k+6)\(⋮\)3 là hợp số (loại)
Vậy số cần tìm là 3
Chỉ cần 1 cách của nhuyễn thanh tùng có thể giải quyết cả 4 câu nên 3 câu còn lại e tự làm tiếp nhé
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3)⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm