Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số nguyên n sao cho
a, [3n+2]chia hết cho[n-1]
b,[3n+24]chia hết cho[n-4]
c,[n2+5]chia hết cho[n+1]
a,3n+2 chia hết cho n-1
=>3n-3+5 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-4,0,2,6}
b,3n+24 chia hết cho n-4
=>3n-12+36 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
=>36 chia hết cho n-4
Bạn làm tiếp nha
c,n2+5 chia hết cho n+1
=>n2-1+6 chia hết cho n+1
=>(n-1).(n+1)+6 chia hết cho n+1
Mà (n-1).(n+1) chia hết cho n+1
=>6 chia hết cho n+1
Bạn tự làm tiếp nha
B, 3n chia hết cho n-1
3.(n-1)+3 chia hết cho n-1
3.(n-1)chia hết cho n-1 suy ra 3 chia hết cho n-1
suy ra n-1 thuộc ước của 3 mà ước của 3 là 1,3,-1,-3
n-1=1, n=2
n-1=3, n=4
n-1=-1, n=0
n-1 =-3, n=-2
ĐÚNG THÌ TICK CHO MÌNH NHÉ, CÂU C LÀM TƯƠNG TỰ
a)3n+2/n-1=>3n-3+5/n-1.Vì3n-3/n-1=>5/n-1=>n-1 thuộc ước 5
b)3n+24/n-4=>3n-12+36/n-4.Vì 3n-12/n-4=>36/n-4=>n-4 thuộc ước 36
c)n^2+5/n+1=>n*n+5/n+1=>n*(n+1)+4/n+1.Vì n*(n+1)/n+1=>4/n-1=>n+1 thuộc ước 4
a/ \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3}{n-1}+6\)
=>n-1 thuộc ƯỚC của 3
=>n-1=1=>n=2
=>n-1=-1=>n=0
=>n-1=3=>n=4
=>n-1=-3=>n=-1
b/ \(\frac{3\left(n+4\right)+12}{n-4}=\frac{3}{n-4}+13\)
=>n-4 thuộc ƯỚC của 3
=>n-4=1=>n=5
=>n-4=-1=>n=3
=>n-4=3=>n=7
=>n-4=-3=>n=1
câuc(uoc cua5) tương tự mình giải vậy ko bít đúng ko nữa
a) \(3n+5⋮n+4\)
\(\Rightarrow3.\left(n+4\right)-7⋮n+4\)
Mà \(3.\left(n+4\right)⋮n+4\)
\(\Rightarrow7⋮n+4\)
Tự tìm nốt
b) \(n^2+5⋮n+1\)
\(\Rightarrow n^2+n-n+5⋮n+1\)
\(\Rightarrow n.\left(n+1\right)-\left(n-5\right)⋮n+1\)
mà \(n.\left(n+1\right)⋮n+1\)
\(\Rightarrow n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
\(\Rightarrow6⋮n+1\)
Tìm nốt
a/
n-6 chia hết cho n-1
=>(n-1)-5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
b/3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
c/
3n+24 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 E U(36) ={1;-1;2;-2;3;-3;4;-4;9;-9;12;-12;18;-18;36;-36}
=> =>n E {5;3;6;2;7;1;8;0;13;-5;16;-8;22;-14;40;-32}
vì n E N
=>n E {0;1;3;5;6;7;8;13;16;22;40;}
.........mỏi tay V~
a, n-6 chia hết cho n-1
=> n-1-5 chia hết cho n-1
=> -5 chia hết cho n-1
=> n-1 thuộc Ư(-5)= -5;-1;1;5
Sau đó bạn kẻ bảng ra. Những câu sau làm tương tự, bạn chỉ cần biến đổi sao cho vế phải có dạng là 1 tích và 1 số nguyên, tích đó chia hết cho vế trái, rồi suy ra vế trái thuộc ước của số nguyên đó là được. Chọn nha
a)
3n + 2 chia hết cho n - 1
<=> 3n+2 - 3( n - 1) chia hết cho n - 1
<=> 3n + 2 - 3n + 3 chia hết cho n - 1
<=> 5 chia hết cho n - 1
<=> \(n-1\inƯ_5\)
<=> \(n-1\in\left\{1;5;-1;-5\right\}\)
<=> \(n\in\left\{2;6;0;-4\right\}\)
Vậy \(n\in\left\{2;6;0;-4\right\}\)
b)
3n - 24 chia hết cho n - 4
<=> 3(n - 4 ) - (3n - 24 )chia hết cho n - 4
<=> 3n - 12 - 3n +24 chia hết cho n - 4
<=>12 chia hết cho n - 4
<=> \(n-4\inƯ_{12}\)
<=> \(n-4\in\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}\)
<=>\(n\in\left\{5;;6;7;8;10;16;3;2;1;-1;0;-2;-8\right\}\)
Vậy \(n\in\left\{5;;6;7;8;10;16;3;2;1;-1;0;-2;-8\right\}\)
a) 3n+2 chia hết cho n-1
=> (3n-3)+5 chia hết cho n-1
=> 5 chia hết cho n-1 (vì 3n-3 chia hết cho n-1)
=> n-1\(\in\)Ư(5)={1;-1;5;-5}
Nếu n-1=1=>n=2
Nếu n-1=-1=>n=0
Nếu n-1=5=>n=6
Nếu n-1=-5=>n=-4
b) 3n-24 chia hết cho n-4
=>(3n-12)-12 chia hết cho n-4
=> n-4\(\in\)Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;12}
Nếu n-4=1=>n=5
Nếu n-4=..........
........
Đễ nhưng quá nhiều không đủ kiên nhẫn để làm. Bạn đăng lần lượt thôi.
a) Ta có :
\(3n+2⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮n-1\\3n-3⋮n-1\end{matrix}\right.\)
\(\Leftrightarrow5⋮n-1\)
Vì \(n\in Z\Leftrightarrow n-1\in Z;n-1\inƯ\left(5\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n-1=5\Leftrightarrow n=6\\n-1=1\Leftrightarrow n=2\\n-1=-5\Leftrightarrow n=-4\\n-1=-1\Leftrightarrow n=0\end{matrix}\right.\)
Vậy ....
b)Ta có :
\(3n+24⋮n-4\)
Mà \(n-4⋮n-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+24⋮n-4\\3n-12⋮n-4\end{matrix}\right.\)
\(\Leftrightarrow36⋮n-4\)
Vì \(n\in Z\Leftrightarrow\) \(n-4\in Z;n-4\inƯ\left(36\right)\)
Xét ước như trên
c, tương tự
a) 3n + 2 chia hết cho n-1
<=> 3n - 3 + 5 chia hết cho n-1
<=> 3(n-1) + 5 chia hết cho n-1
<=> 5 chia hết cho n-1
<=> n-1 \(\in\)Ư(5) = {\(\pm\)1;\(\pm\)5}
Vậy n \(\in\){2;0;6;-4}
Mấy bài sau tương tự~