Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{6n-5}{3n+1}\inℤ\)
=> 6n - 5 ⋮ 3n + 1
=> 6n + 2 - 7 ⋮ 3n + 1
=> 3(3n + 1) - 7 ⋮ 3n + 1
=> 7 ⋮ 3n + 1
=> 3n + 1 thuộc Ư(7)
=> 3n + 1 thuộc {-1; 1; -7; 7}
=> 3n thuộc {-2; 0; -8; 6}
=> n thuộc {0; 2} vì n thuộc Z
a) Để \(B\inℤ\)
\(\Rightarrow\left(6n-5\right)⋮\left(3n+1\right)\)
\(\Rightarrow\left(6n+2-7\right)⋮\left(3n+1\right)\)
\(\Rightarrow2.\left(3n+1\right)-7⋮\left(3n+1\right)\)
Vì \(2.\left(3n+1\right)⋮\left(3n+1\right)\)
nên \(-7⋮3n+1\)
\(\Rightarrow3n+1\inƯ_{\left(-7\right)}\)
\(\Rightarrow3n+1\in\left\{1;-1;7;-7\right\}\)
Lập bảng xét 4 trường hợp ta có :
\(3n+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(0\) | \(-\frac{2}{3}\) | \(2\) | \(-\frac{8}{3}\) |
Vậy \(n\in\left\{0;2\right\}\)
a, để B là số nguyên thì 6n+7 chia hết cho 2n+3
=> 6n+9-2 chia hết cho 2n+3
Vì 6n+9 chia hết cho 2n+3
=> 2 chia hết cho 2n+3
Mà 2n+3 lẻ
=> 2n+3 thuộc ước lẻ của 2
2n+3 | n |
1 | -1 |
-1 | -2 |
KL: n\(\in\){-1; -2}
\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2
Ta có :
\(A=\frac{8n-3}{2n+1}=\frac{8n+4-7}{2n+1}=\frac{8n+4}{2n+1}-\frac{7}{2n+1}=\frac{4\left(2n+1\right)}{2n+1}-\frac{7}{2n+1}=4-\frac{7}{2n+1}\)
Để A đạt GTNN thì \(\frac{7}{2n+1}\) phải đạt GTLN hay nói cách khác \(2n+1>0\) và đạt GTNN
\(\Rightarrow\)\(2n+1=1\)
\(\Rightarrow\)\(2n=0\)
\(\Rightarrow\)\(n=\frac{0}{2}\)
\(\Rightarrow\)\(n=0\)
Suy ra : \(A=\frac{8n-3}{2n+1}=\frac{8.0-3}{2.0+1}=\frac{0-3}{0+1}=\frac{-3}{1}=-3\)
Vậy \(A_{min}=-3\) khi \(n=0\)
Chúc bạn học tốt ~
(7n-8)/(2n-3) = (7n - 21/2 + 5/2)/(2n - 3) = [(7/2)(2n-3) + 5/2]/(2n-3) = = 7/2 + 5/(4n-6)
Phân số đã cho có GTLN khi 5/(4n-6) có GTLN, tức là khi 4n-6 có giá trị dương nhỏ nhất (với n là stn) hay n = 2 n = 2
(khi đó phân số có GTLN là 7/2 + 5/2 = 6).
A có giá trị nguyên \(\Leftrightarrow\frac{6n}{3n+2}\) có giá trị nguyên
\(\Rightarrow\frac{2\left(3n+2\right)}{3n+2}=2+\frac{-2}{3n+2}\) có giá trị nguyên
\(\Rightarrow3n+2\inƯ\left(-2\right)=\left\{1,-1,2,-2\right\}\)
Ta có bảng sau:
3n+2 | 1 | -1 | 2 | -2 |
n | -0,33 | -1 | 0 | -1,33 |
Vì bạn ko cho điều kiện của n nên
n={ -0,33; -1; 0;-1,33}
Còn phần B mik ko làm nha
ai thấy đúng thì nhấn vào chữ" đúng" hộ mik nha
\(b)\) Ta có :
\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại )
Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN
\(\Rightarrow\)\(3n+2=1\)
\(\Rightarrow\)\(3n=-1\)
\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) )
\(\Rightarrow\)\(3n+2=2\)
\(\Rightarrow\)\(3n=0\)
\(\Rightarrow\)\(n=0\)
Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)
Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A\inℤ\) thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3n+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)
Vậy \(n=1\) hoặc \(n=-1\)
Chúc bạn học tốt ~
Lời giải:
$B=\frac{3n-1}{2n+3}=\frac{1,5(2n+3)-5,5}{2n+3}=1,5-\frac{5,5}{2n+3}$
Để $B$ min thì $\frac{5,5}{2n+3}$ max
Để $\frac{5,5}{2n+3}$ max thì $2n+3$ là số dương nhỏ nhất.
Với $n$ nguyên, $2n+3$ là số nguyên dương nhỏ nhất khi $2n+3=1$
$\Rightarrow n=-1$
Khi đó: $B_{\min}=\frac{3(-1)-1}{2(-1)+3}=-4$
=> $B'(n) = 3 - \frac{1}{4n^2}$
=> $$3 - \frac{1}{4n^2} = 0$$
=> $B(1) = 3 . 1 - \frac{1}{2*1} + 3 = 5,5$