Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{15}{n}\)nhận giá trị nguyên <=>n thuộc Ư(15)
<=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}
Vậy \(\frac{15}{n}\)đạt giá trị nguyên <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}
Để 3 phân số trên nhận giá trị nguyên thì
n\(\in\)Ư(15)=>n={\(\pm\)1;\(\pm\)3;\(\pm\)5;\(\pm\)15}
n+2\(\in\)Ư(12)
2n-5\(\in\)Ư(6)
=>n=\(\pm\)1;\(\pm\)3,...
Phân số nguyên
<=> n + 4 = n + 2 + 2 chia hết cho n + 2
<=> 2 chia hết cho n + 2
=> n + 2 thuộc Ư(2) = {1 ; -1 ; 2 ; -2}
Còn lại , tự lập bảng xét giá trị của n
Ta có : \(\frac{n+4}{n+2}=\frac{n+2+2}{n+2}=\frac{n+2}{n+2}+\frac{2}{n+2}=1+\frac{2}{n+2}\)
Để \(\frac{n+4}{n+2}\in Z\) thì 2 chia hết cho n + 2
=> n + 2 thuộc Ư(2) = {-2;-1;1;2}
Ta có bảng :
n + 2 | -2 | -1 | 1 | 2 |
n | -4 | -3 | -1 | 0 |
a) Gọi d là ước nguyên tố của 2n+9/n+1. Ta có:
2n+9-2(n+1) chia hết cho d => d=7
Ta thấy 2n+9 chia hết cho 7 khi đó n+1 chia hết cho 7.
<=> 2n+9-7 chia hết cho 7.
<=>2(n+1) chia hết cho 7 <=> n+1 chia hết cho 7 <=> n=7k-1(k thuộc N)
Vậy nếu n khác 7k-1 thì A là phân số.
Để \(N\) nguyên thì \(n^2+3n-2⋮n^2-3\)
\(\Rightarrow n^2-3+3n+1⋮n^2-3\)
\(\Rightarrow3n+1⋮n^2-3\)
\(\Rightarrow\left(3n+1\right)\left(3n-1\right)⋮n^2-3\)
\(\Rightarrow9n^2-1⋮n^2-3\)
\(\Rightarrow9n^2-27+26⋮n^2-3\)
\(\Rightarrow9\left(n^2-3\right)+26⋮n^2-3\)
\(\Rightarrow26⋮n^2-3\)
\(\Rightarrow n^2-3\inƯ\left(26\right)=\left\{-26,-13,-2,-1,1,2,13,26\right\}\)
Vì \(n^2\ge0\Rightarrow n^2-3\ge-3\) nên \(n^2-3\in\left\{-2,-1,1,2,13,26\right\}\)
\(\Rightarrow n^2\in\left\{1,2,4,5,16,29\right\}\)
Vì \(n^2\) là số chính phương nên \(n^2\in\left\{1,4,16\right\}\)
\(\Rightarrow n\in\left\{-1,1,-2,2,-4,4\right\}\)
Thử lại thấy \(n\in\left\{-1,1,-2,2,4\right\}\) thỏa mãn
Do phân số \(\frac{n+9}{n-6}\)nguyên dương
=> n + 9 chia hết cho n - 6
=> n - 6 + 15 chia hết cho n - 6
Do n - 6 chia hết cho n - 6 => 15 chia hết cho n - 6
Mà n > 6 => n - 6 > 0 => \(n-6=15\)
=> n = 21
Mk nghĩ chỗ điều kiện n < 6 fai sửa thành n > 6 ms đúng đó
ta có: n+ 3 = n - 2 + 5
để \(\frac{n+3}{n-2}\)có giá trị là số nguyên thì n + 2 \(⋮\) n - 2.
\(\Rightarrow\)n -2 + 5 \(⋮\)n - 2 mà n-2\(⋮\) n -2 nên 5\(⋮\)n - 2
do đó n - 2
mà Ư(5) = {1;-1;5;-5}
Xét các trường hợp :
1. nếu n-2 = 1 thì n= 3
2. nếu n-2 = -1 thì n = 1
3. nếu n-2 = 5 thì n= 7
4. nếu n-2 = -5 thì n= -3
vậy n \(\in\){3;1;-3;7} để \(\frac{n+3}{n-2}\)
\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để \(A\in Z\Leftrightarrow5⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\)Ta có bảng giá trị
\(n-2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(3\) | \(1\) | \(8\) | \(-3\) |
Vậy, \(A\in Z\)khi \(n\in\left\{-3;1;3;8\right\}\)
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
\(\frac{2n+9}{n-2}=\frac{2n-4+13}{n-2}=\frac{2.\left(n-2\right)+13}{n-2}=2+\frac{13}{n-2}\)\(\left(ĐKXĐ:n\ne2\right)\)
Để \(\frac{2n+9}{n-2}\)nguyên thì \(2+\frac{13}{n-2}\)nguyên
Mà \(2\in Z\)nên để \(2+\frac{13}{n-2}\)nguyên thì \(\frac{13}{n-2}\)nguyên
Để \(\frac{13}{n-2}\)nguyên thì \(13⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(13\right)\)
\(\Leftrightarrow n-2\in\left\{-13;-1;1;13\right\}\)
\(\Leftrightarrow n\in\left\{-11;1;3;15\right\}\)(Đều thỏa mãn ĐK)
Vậy.......
n+3/n-2 nguyên<=>n+3 chia hết cho n-2
<=>(n-2)+5 chia hết cho n-2
mà n-2 chia hết cho n-2
=>5 chia hết cho n-2
=>n-2 E Ư(5)={-5;-1;1;5}
=>n E {-3;1;3;7}
Để : \(y=\frac{n+3}{n-2}\)nhận được giá trị nguyên
=> n + 3 chia hết cho n - 2
=> n - 2 + 5 chia hết cho n - 2
=> 5 chia hết cho n - 2
=> n - 2 thuộc Ư ( 5 ) = { - 1 ; 1 ; - 5 ; 5 }
Ta có :
n - 2 = - 1 => n = 1
n - 2 = 1 => n = 3
n - 2 = - 5 => n = - 3 ( loại )
n - 2 = 5 => n = 7
Vậy n thuộc { 1 ; 3 ; 7 }
Chúc bạn học tốt nha !!!
Phân số nhận giá trị nguyên khi (9 - n) chia hết cho (n - 6)
9 - n = 3 + (6 - n)
Mà (6 - n) chia hết cho (n - 6)
nên để (9 - n) chia hết cho (n - 6) thì 3 phải chia hết cho (n - 6)
Suy ra (n - 6) có thể nhận các giá trị 1; -1; 3; -3.
Vậy n có thể là: 3; 5; 7; 9.