Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để a là phân số tối giản thì ƯCLN(3n-1;n-2)=1
Gọi ƯCLN(3n-1;n-2)=d => 3n-1 chia hết cho d;n-2 chia hết cho d
=>3n-1-(n-2) chia hết cho d
=>3n-1-3(n-2) chia hết cho d
=>3n-1-3n-6 chia hết cho d
=>-5 chia hết cho d
gọi UCLN(2n+1,3n+1)=d
=>6n+2 chia hết cho d
6n+3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1/3n+1 tối giản
Gọi (2n+2,6n+5) là d. Điều kiện : d\(\in\)N*.
Vì (2n+2,6n+5) là d
\(\Rightarrow\)\(\hept{\begin{cases}2n+2⋮d\\6n+5⋮d\end{cases}}\)
\(\Rightarrow\)(2n+2)-(6n+5)\(⋮\)d
\(\Rightarrow\)(6n+6)-(6n+5)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)2n+2 và 6n+5 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{2n+2}{6n+5}\)là phân số tối giản
Vậy \(\frac{2n+2}{6n+5}\)là phân số tối giản.
Gọi d là ƯCLN của 2n + 2 và 6n + 5 ( d ∈ N*)
Ta có : 2n + 2 chia hết cho d => 3.(2n + 2) chia hết cho d => 6n + 6 chia hết cho d
=>6n + 5 chia hết cho d
=> 6n + 6 - ( 6n + 5) chia hết cho d
=> 6n + 6 - 6n - 5 chia hết cho d
=> 1 chia hết cho d => d ∈ Ư(1)
Mà d ∈ N* => d = 1
=> ƯCLN(2n+2;6n+5) = 1
Vậy : 2n+2/6n+5 là phần số tối giản
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
=> 2n+3 cà 4n+1 có ước chung là 1
Thử số 1:21+5=26 ,31-1=30 (loại )
2 :22+5=27 ,32-1=31(chọn)
=>n=1