Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(4n^2+14n+7=\left(n+3\right)\left(4n+2\right)+1\)
Do n là số nguyên dương \(\Rightarrow4n^2+14n+7\)và n+3 nguyên tố cùng nhau
\(\Rightarrow\left(n+3\right)\left(4n^2+14n+7\right)\)là 1 SCP thì n+3 và \(4n^2+14n+7\)là 1 số chính phương
Do n nguyên dương \(\Rightarrow\left(2n+3\right)^2\le4n^2+14n+7< \left(2n+4\right)^2\)\(\Rightarrow4n^2+14n+7=\left(2n+3\right)^2\Leftrightarrow n=1\)khi đó n+3=4 là 1 scp
Thử lại với n=1 \(\left(n+3\right)\left(4n^2+14n+7\right)=100\left(tm\right)\)
Vậy n=1
Đặt
\(a^2=n^2-n+2\)
Ta có:
\(\Rightarrow\left(n-1\right)^2< a^2=n^2-n+2< \left(n+1\right)^2\)
\(\Rightarrow n^2-n+2=n^2\)
\(\Leftrightarrow n=2\)
Cái này bạn phải chứng minh bổ đề phụ nhá
\(n=1\)ta thấy thõa mãn
Nếu \(n\ge2\)thì \(n^{1998}+n^{1987}+1>n^2+n+1\)
Măt khác : \(n^{1988}+n^{1987}+1=n^2\left(n^{1986}-1\right)+n\left(n^{1986}-1\right)+\left(n^2+n+1\right)\)
Nên \(n^2+n+1\)| \(n^{1988}+n^{1987}+1\)
Vậy \(n^{1988}+n^{1987}+1\) là hợp số
Mik có sửa lại cái đề mới nãy của bạn ( bạn xem lại đề bài bạn cho có đúng không nhé )
n phai le=> n-41=2=> n=43 (duy nhat chua du)
43+18=61 nhan
ds: n=43
Đặt \(n+1=k^2\left(k\inℕ,k\ge2\right)\) (1) và \(4n+29=l^2\left(l\inℕ,l\ge6\right)\) (2)
(1) \(\Leftrightarrow4n+4=4k^2\) (3)
Từ (2) và (3) \(\Rightarrow l^2-4k^2=25\) \(\Leftrightarrow\left(l-2k\right)\left(l+2k\right)=25\)
Do \(l+2k>0\Rightarrow l-2k>0\). Lại có \(l-2k< l+2k\) nên ta có
\(\left\{{}\begin{matrix}l-2k=1\\l+2k=25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=6\\l=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n+1=36\\4n+29=169\end{matrix}\right.\) \(\Leftrightarrow n=35\) (thỏa)
Vậy \(n=35\) là số nguyên dương duy nhất thỏa mãn ycbt.