K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

ta có \(5^2\equiv1\left(mod12\right)\Rightarrow5^{2018}\equiv1\left(mod12\right)\)

\(7^2^{ }\equiv1\left(mod12\right)\Rightarrow7^{10}\equiv1\left(mod12\right)\)

29 tháng 3 2019

Bài 1: Mình không biết làm.

Bài 2:

TH1: n là số chẵn => n = 2k (k thuộc N), khi đó (n+20102011) = (2k+20102011) là số chẵn (vì 2k chẵn và 20102011 là số chẵn)

=> (n+20102011) chia hết cho 2.

Nên (n+20102011)(n+2011) chia hết cho 2

TH2: n là số lẻ => n = 2k+1 (k thuộc N), khi đó n + 2011 = 2k + 1 + 2011 = 2k + 2012 là số chẵn (vì 2k và 2012 là số chẵn)

=> n + 2011 chia hết cho 2

Nên (n+20102011)(n+2011) chia hết cho 2

Vậy (n+20102011)(n+2011) chia hết cho 2 với mọi n thuộc N

3 tháng 2 2019

\(\text{Giải}\)

\(5^{70}+7^{50}=25^{35}+49^{25}\)

\(25\equiv1\left(\text{mod 12}\right);49\equiv1\left(\text{mod 12}\right)\)

\(\Rightarrow5^{70}+7^{50}\equiv\left(1+1\right)\left(\text{mod 12}\right)\equiv2\left(\text{mod 12}\right)\)

\(\Rightarrow\text{5^70+7^50 chia 12 dư 2}\)

3 tháng 2 2019

ta có : \(5^2\equiv1\)( mod 12 ) \(\Rightarrow\left(5^2\right)^{35}\equiv1\)( mod 12 )

hay \(5^{70}\equiv1\)( mod 12 )  (1)  

 \(\Rightarrow\left(7^2\right)\equiv1\)( mod 12 ) \(\Rightarrow\left(7^2\right)^{25}\equiv1\)( mod 12 ) hay \(7^{50}\equiv1\)( mod 12 ) ( 2 )

từ ( 1 ) ; ( 2 )  suy ra \(5^{70}+7^{50}\div12\) dư 2

15 tháng 3 2018

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)

           

7 tháng 2 2017

 cau 1 minh ra 6

8 tháng 2 2017

Cau 1 ra d­u 6 . minh hoc rui day la bai dong du

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)a) Có giá trị là số tự nhiênb) Là phân số tối giảnBài 4: a) Tìm số tự nhiên n để n+15 chia...
Đọc tiếp

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.

Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.

Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)

a) Có giá trị là số tự nhiên

b) Là phân số tối giản

Bài 4: a) Tìm số tự nhiên n để n+15 chia hết cho n+3

b) Tìm số tự nhiên n sao cho 2-1 chia hết cho 7

Bài 5: a) Tìm số dư khi chia (n3-1)111X(n2-1)333 cho n (n thuộc N)

b) Số A chia 7 dư 3, chia 17 dư 12, chia 23 dư 7. Hỏi A chia 2737 dư bao nhiêu?

Bài 6: Cho a * b =45512 . Tìm số dư trong phép chia a+b cho 3,4.

Bài 7: Tìm số dư khi chia (910)11 - (59)10 cho 13

Bài 8: Tìm chữ số hàng đơn vị, hàng chục, hàng trăm của (29)2010

0
30 tháng 1 2020

Mình trả lời vào câu hỏi trước của bạn rồi đó !