K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2016

chị đợi 4 năm nữa nha

Vì số dư luôn luôn bé hơn số chia, mà số chia là 17, số dư lớn hơn 15

=> Số dư là 16

Số tự nhiên a là: 6.17+16=118

Vì số dư luôn luôn bé hơn  số chia, mà số chia là 17,  số dư lớn hơn 15

=>Số dư là 16

Số tự nhiên a là: 6.17+16=118

1 tháng 9 2018

1) 

Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )

Ta có:

\(f\left(1\right)=a+b+c+d+e=0\)                                            (1)

\(f\left(2\right)=16a+8b+4c+2d+e=0\)                              (2)

\(f\left(3\right)=81a+27b+9c+3d+e=0\)                           (3)

\(f\left(4\right)=256a+64b+16c+4d+e=6\)                      (4)

\(f\left(5\right)=625a+125b+25c+5d+e=72\)                (5)

\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)

\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)

\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)

\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)

\(E=B-A=50a+12b+2c=0\)

\(F=C-B=110a+18b+2c=6\)

\(G=D-C=194a+24b+2c=66-6=60\)

Tiếp tục lấy H=F-E; K=G-F; M=H-K

Ta tìm được a

Thay vào tìm được b,c,d,e

2 tháng 9 2018

1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e

có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n) 

thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7 

Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42

Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).

2. Thiếu dữ liệu 

3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)

...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)

để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5 

Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý 

12 tháng 8 2020

Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)

- Chứng minh A chia hết cho 2:
 +) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2

 +) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2

- Chứng minh A chia hết cho 3:
 +) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3

 +) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:

 +) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5

 +) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5

Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)

\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7

15 tháng 6 2016

Vì khi chia n cho 15 và 17 có số dư lần lượt là 7 và 5

=> n - 7 chia hết cho 15, n - 5 chia hết cho 17

=> n - 7 - 15 chia hết cho 15, n - 5 - 17 chia hết cho 17

=> n - 22 chia hết cho 15, n - 22 chia hết cho 17

=> n - 22 thuộc BC(15,17)

Do (15,17)=1 => n - 22 thuộc B(255)

=> n=255k+22(k thuộc N)

Lại có 99 999 < n < 1 000 000

=> 99 999 < 255k + 22 < 1 000 000

=> 99 977 < 255k < 999 978

=> 392 < k < 3922

Mà n nhỏ nhất => k nhỏ nhất => k = 393 => n = 255 × 393 + 22 = 100 237

Vậy số cần tìm là 100 237

28 tháng 6 2016

Bài toán này là 'Bài toán 108' thuộc chuyên mục 'Toán vui hàng tuần' mà !

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:

Áp dụng định lý Fermat nhỏ thì:

$2020^6\equiv 1\pmod 7$

$\Rightarrow (2020^6)^{336}.2020^4\equiv 1^{336}.2020^4\equiv 2020^4\pmod 7$

Có:

$2020\equiv 4\pmod 7$

$\Rightarrow 2020^4\equiv 4^4\equiv 256\equiv 4\pmod 7$

$\Rightarrow A\equiv 2020^4\equiv 4\pmod 7$

Vậy $A$ chia $7$ dư $4$

4 tháng 10 2023

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)