Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow2n^2-4n+5n-10+5⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
Câu 2:
b: \(\dfrac{x^4-4x^2+2x-4a}{x-2}=\dfrac{x^4-2x^3+2x^3-4x^2+2x-4+4-4a}{x-2}\)
\(=x^3+2x^2+2+\dfrac{4-4a}{x-2}\)
Để dưlà -23 thì 4-4a=-23
=>4a=27
=>a=27/4
Câu 1 .
A = 13 + 23 + 33 + ... + 1003
= 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100
= ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )
= ( 1 + 2 + 3 + .... + 100 )3
Do đó A \(⋮\)1 + 2 + 3 + ... + 100
Câu 2 :
+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)
Do đó 2100 có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751 ( 1)
+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)
Do đó 2100 có 3 chữ số tận cùng chia hết cho 8 ( 2)
Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376
Mà \(376\equiv1\left(mod125\right)\)
=> 2100 chia 125 dư 1
Vậy 2100 chia 125 có số dư là 1
Hok tốt
# owe
-Từ số 4! đến số 10! đều chia hết cho 20 do có thừa số 4.5=20.
-Mà 1!+2!+3!=1+2+6=91!+2!+3!=1+2+6=9 chia 20 dư 9 nên tổng đó chia 20 dư 9.
-Bạn ạ bạn tham khảo từ bài của mình thì ghi tham khảo nhé!
-Từ số 4! đến số 10! đều chia hết cho 20 do có thừa số 4.5=20.
-Mà \(1!+2!+3!=1+2+6=9\) chia 20 dư 9 nên tổng đó chia 20 dư 9.