Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\left(x^2-1\right)g\left(x\right)+ax+b\)
\(f\left(1\right)=\left(1^2-1\right)g\left(1\right)+a+b=1^{2015}+1^{1945}+1^{1930}-1^2-1+1=2\)
\(f\left(-1\right)=\left(\left(-1\right)^2-1\right)g\left(-1\right)+a\left(-1\right)+b=-1-1+1-1+1+1=0\)
\(\hept{\begin{cases}a+b=2\\-a+b=0\end{cases}}\Leftrightarrow a=b=1\)
Vậy đa thức dư là : x + 1
c) x10 - 10x + 9
= x10 - x - 9x + 9
= x( x9 - 1) - 9( x - 1)
= x( x - 1)( x8 + x7 + x6 +...+ x + 1) - 9( x - 1)
= ( x - 1)[ x( x8 + x7 + x6 +...+ x + 1) - 9]
Do : ( x - 1) chia hết cho ( x- 1)( x - 1)
-->( x - 1)[ x( x8 + x7 + x6 +...+ x + 1) - 9] chia hết cho ( x - 1)2
Hay , x10 - 10x + 9 chia hết cho ( x - 1)2 , đpcm
d) 8x9 - 9x8 + 1
= 8x9 - 8x8 - x8 + 1
= 8x8( x - 1) - ( x8 - 1)
= 8x8( x - 1) - ( x - 1)( x7 + x6 +...+ x + 1)
= ( x - 1)[ 8x8( - x7- x6 -...-x - 1) ]
Do : ( x - 1) chia hết cho ( x - 1)( x - 1)
--> ( x - 1)[ 8x8( - x7- x6 -...-x - 1) ] chia hết cho ( x - 1)( x - 1)
Hay , 8x9 - 9x8 + 1 chia hết cho ( x - 1)2 , đpcm