Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Tìm số abc:
Vì abc > 600 và a chẵn nên a = 6 hoặc 8.
- nếu a = 6, ta có a.b.c = 6. 2m.2n = 24.m.n (đặt b = 2m, c = 2n, do b; c chẵn)
do số 6bc chia hết a.b.c nên 6bc chia hết 24.m.n hay 6bc là bội của 24, có thể là 624; 648;672; 698
đối chiếu điều kiện, chỉ có 624 thoả mãn
- nếu a = 8, ta có a.b.c = 8. 2m.2n = 32.m.n , tương tự như trên số 8bc là bội của 32, có thể là 800; 832; 864; 896
đối chiếu điều kiện, không có số nào thoả mãn
Vậy abc = 624
+) Tìm x, y
xxyy = (xx)2 + (yy)2
=> 1100. x + 11. y = 121.x2 + 121.y2 (cấu tạo số)
=> 100.x + y = 11x2 + 11y2 => x + y = 11.(x2 + y2) - 99.x
Vế phải luôn chia hết cho 11 nên vế trải phải chia hết cho 11, x; y là các chữ số nên x+ y = 11
+) Vậy \(A=\frac{1998\left(6+2+4-1\right)}{1999.11}=\frac{1998.11}{1999.11}=\frac{1998}{1999}\)
bn tham khảo nhs!
Câu hỏi của nguyennamphong - Toán lớp 6 - Học toán với OnlineMath
Vì abc<1000
=>a<7
=>abc<700
=> 1<=a,b,c<=5
Ta đi chứng minh trong 3 số a,b,c tồn tại một số bằng 5
Thật vậy: Giả sử cả 3 số a,b,c<=4
=>abc<=72<100 vô lí
Do đó a=5 hoặc b=5 hoặc c=5
*Nếu a=5
Ta có
500+bc=5!+b!+c!<=240+b!
=>b!+240>500
=>b!>260
=>b>5 vô lí
Nên a<=4
*Nếu b=5
Lập luận tương tự b<=4
*Nếu c=5
Tìm được a=1;b=4
Vậy…
abc=100a+ 10b +c =a! +b! +c!.
0! = 1, 2! = 2, 3!= 6, 4! = 24, 5!= 120, 6!= 720, 7! = 5040 (4 chữ số) => a; b; c <7, a khác 0
- xét trường hợp a= 6, thì 600+ 10b+ c= 720+b! + c! <=> 10b+ c =120 +b! +c! (vô lý vì b, c <7)
- nếu a= 5 thì 500+ 10b +c = 120 +b!+ c! [vô lý vì vt >500, vp <360 (a=5, b=5, c=5)] ( vt= vế trái, vp= vế phải)
- nếu a= 4 thì 400+ 10b +c = 24 +b!+ c! [vô lý vì vt >400, vp < 264 (a=4, b=5, c=5)]
- nếu a= 3 thì 300+ 10b +c = 6 +b!+ c! [vô lý vì vt >300, vp <246 (a=3, b=5, c=5) ]
các trường hợp a=5,4,3 thì b và c không thể là số 6, giá trị lớn nhất của b và c là 5
- nếu a= 2 thì 200+ 10b +c = 2+b!+ c! <=> 128+ 10b+ c= b! + c! => b hoậc c là 5
+ b= 5 thì 128+ 50 +c= 120+ c! (không tồn tại c )
+c=5 thì 128+10b+ 5= b! +120 (không tồn tại b )
=> a=1 và ta có 100+ 10b+ c= 1 +b! +c! => b hoặc c là 5
+ b=5 thì 100+ 50+ c= 1 +120 +c! ( không tồn tại c)
+c= 5 thì 100+ 10b+ 5= 1 +b! +120 <=> 10b= 16+ b! <=> b=4
vậy abc= 145.
bài giải hơi dài, nhưng suy nghĩ ra nghiệm dễ vì a, b, c chạy từ 0 đến 6
abc=100a+ 10b +c =a! +b! +c!.
0! = 1, 2! = 2, 3!= 6, 4! = 24, 5!= 120, 6!= 720, 7! = 5040 (4 chữ số) => a; b; c <7, a khác 0
- xét trường hợp a= 6, thì 600+ 10b+ c= 720+b! + c! <=> 10b+ c =120 +b! +c! (vô lý vì b, c <7)
- nếu a= 5 thì 500+ 10b +c = 120 +b!+ c! [vô lý vì vt >500, vp <360 (a=5, b=5, c=5)] ( vt= vế trái, vp= vế phải)
- nếu a= 4 thì 400+ 10b +c = 24 +b!+ c! [vô lý vì vt >400, vp < 264 (a=4, b=5, c=5)]
- nếu a= 3 thì 300+ 10b +c = 6 +b!+ c! [vô lý vì vt >300, vp <246 (a=3, b=5, c=5) ]
các trường hợp a=5,4,3 thì b và c không thể là số 6, giá trị lớn nhất của b và c là 5
- nếu a= 2 thì 200+ 10b +c = 2+b!+ c! <=> 128+ 10b+ c= b! + c! => b hoậc c là 5
+ b= 5 thì 128+ 50 +c= 120+ c! (không tồn tại c )
+c=5 thì 128+10b+ 5= b! +120 (không tồn tại b )
=> a=1 và ta có 100+ 10b+ c= 1 +b! +c! => b hoặc c là 5
+ b=5 thì 100+ 50+ c= 1 +120 +c! ( không tồn tại c)
+c= 5 thì 100+ 10b+ 5= 1 +b! +120 <=> 10b= 16+ b! <=> b=4
vậy abc= 145.
Lê Phúc Huy copy trên Yahoo thì giải làm j? Lần sau copy xong thì nhớ ghi nguồn vào nếu tôn trọng công sức của người khác
Giả sử 0<a<b<c. Theo đề bài
\(\overline{abc}+\overline{acb}=200a+11b+11c=499\)
\(\Rightarrow11\left(a+b+c\right)=499-189a=495+4-187a-2a\)
\(\Rightarrow11\left(a+b+c\right)=45.11-17.11.a+\left(4-2a\right)\)
\(11\left(a+b+c\right)⋮11\Rightarrow145.11+17.11.a+4-2a⋮11\)
\(\Rightarrow4-2a⋮11\Rightarrow a=2\) Thay a=2 vào biểu thức
\(11\left(a+b+c\right)=499-189a\Rightarrow a+b+c=11\)
(gt) <=> 38 + c + d chia hết cho 5
nên A = 38 + c + d phải có chữ số tận cùng là 0 hoặc 5
vì c,d là các chữ số => 0 =< c,d < 10
=> A = 38 + c + d < 58
=> A thuộc {40;45;50;55} (do A chia hết cho 5)
=> c + d = {2;7;12;17}
Q = 65c3596d4
*Điều kiện cần và đủ(thử lại)
Q tận cùng là 4 nên số hàng chục phải là số chẵn
d thuộc {2;4;6;8}
d = 2 => c thuộc {0;5}, thử c => loại
d = 4 => c thuộc {3;8}, thử c => loại
d = 6 => c thuộc {1;6}, thử c => loại
d = 8 => c thuộc {4;9}, thử c => nhận giá trị c = 9
Vậy có 1 nghiệm thỏa là : c = 9; d = 8 khi đó Q = 659359684 = 25678^2
Nguồn: Yahoo
123