Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{9+8+...+1}=\frac{90-45}{45}=\frac{45}{45}=1\)
\(\frac{a1-1}{9}=1\Rightarrow a1=9+1=10\)
\(\frac{a2-2}{8}=1\Rightarrow a2=8+2=10\)
.....
\(\frac{a9-9}{1}=1\Rightarrow a9=1+9=10\)
b.
Cách 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)
Cách 2:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1+3y-2\right)-\left(2x+3y-1\right)}{5+7-6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7+6x}=0\)
\(2x+1=0\Rightarrow x=-\frac{1}{2}\)
\(3y-2=0\Rightarrow y=\frac{2}{3}\)
1) 1 + 2 + 3 + 4 + ... + n = aaa
=> (1 + n).n:2 = 111.a
=> (1 + n).n = 3.37.a.2
=> (1 + n).n = 6.37.a
Mà (1 + n).n là tích 2 số tự nhiên liên tiếp và a là chữ số => a = 6
=> n = 36
2) Do a : 120 dư 58; chia 135 dư 88
=> a = 120.m + 58 = 135.n + 88 (m,n thuộc N)
=> 120.m = 135.n + 30
=> 120.m = 120.n + 15.n + 30
=> 120.m - 120.n = 15.n + 30
=> 120.(m - n) = 15.(n + 2)
=> 8.(m - n) = n + 2
=> n + 2 chia hết cho 8
Mà a nhỏ nhất => n nhỏ nhất; n thuộc N => n + 2 nhỏ nhất
=> n + 2 = 8 => n = 6
=> a = 135.6 + 88 = 898
4) Ta có:
6/7 số thóc kho thứ nhất = 9/11 số thóc kho thứ hai = 2/3 số thóc kho thứ 3
=> số thóc kho thứ nhất = 2/3 : 6/7 = 2/3 . 7/6 = 7/9 số thóc kho thứ ba
số thóc kho hai = 2/3 : 9/11 = 2/3 . 11/9 = 22/27 số thóc kho thứ ba
Lại có: số thóc kho thứ nhất + số thóc kho thứ hai + số thóc kho thứ ba = 210
=> 7/9 số thóc kho ba + 22/27 số thóc kho ba + số thóc kho ba = 210
=> 70/27 số thóc kho ba = 210
=> số thóc kho ba = 210 : 70/27 = 81 (tấn)
Số thóc kho thứ nhất là: 7/9 . 81 = 63 (tấn)
Số thóc kho 2 là: 22/27 . 81 = 66 (tấn)
3) Ta có:
(a1 + a2) + (a2 + a3) + ... + (an-1 + an) + (an + a1)
= a1 + a2 + a2 + a3 + ... + an-1 + an + an + a1
= 2.(a1 + a2 + ... + an-1 + an) là số chẵn
Do |a1 + a2| + |a2 + a3| + ... + |an-1 + an| + |an + a1| cùng tính chẵn lẻ với (a1 + a2) + (a2 + a3) + ... + (an-1 + an) + (an + a1) nên |a1 + a2| + |a2 + a3| + ... + |an-1 + an| + |an + a1| là số chẵn, không thể = 2017
Vậy không tìm được các số nguyên a1; a2; a3; ...; an thỏa mãn đề bài
Để tính S1 + S2 + S3 + ... + S2013 ta tìm số lần xuất hiện chữ số 0; 1;2;...9 từ 000 đến 1999
+) Từ 000 đến 999: có 1000 số. mỗi số có 3 kí tự => có tất cả 3.1000 = 3000 kí tự
trong đó số lần xuất hiện các kí tự 0;1;2;..;9 như nhau
=>Mỗi Số 0;1;...;9 xuất hiện 3000 : 10 = 300 lần
+) Từ 1000 đến 1999: Theo trên , ta có Mỗi số 0;2;3;..;9 cũng xuất hiện 300 lần
riêng số 1 xuất hiện 300 + 1000 = 1300 lần (Do tính số 1 đứng ở hàng nghìn)
Vậy Từ từ 000 đến 1999 : số 1 xuất hiện 1600 lần; các số 0;;2;3;...;9 đều xuất hiện 600 lần
+) từ 2000 đến 2013 có:
S2000 + ...+ S2009 = (2+ 0+ 0 + 0) + (2+0+0+1)...+(2+0+0+9)+(2+0+1+0) +(2+0+1+1)+(2+0+1+2) +(2+0+1+3)
= 2.14 + (1+2+3+..+9) + 1+2+3+4 = 28 + 45 + 10 = 83
Vậy S1 + S2 + S3 + ... + S2013 = 1600 .1 + 600. (0+ 2+3+4+..+9) + 83 = 1600 + 600.44 + 83 = 28083
Để tính S1 + S2 + S3 + ... + S2013 ta tìm số lần xuất hiện chữ số 0; 1;2;...9 từ 000 đến 1999
+) Từ 000 đến 999: có 1000 số. mỗi số có 3 kí tự => có tất cả 3.1000 = 3000 kí tự
trong đó số lần xuất hiện các kí tự 0;1;2;..;9 như nhau
=>Mỗi Số 0;1;...;9 xuất hiện 3000 : 10 = 300 lần
+) Từ 1000 đến 1999: Theo trên , ta có Mỗi số 0;2;3;..;9 cũng xuất hiện 300 lần
riêng số 1 xuất hiện 300 + 1000 = 1300 lần (Do tính số 1 đứng ở hàng nghìn)
Vậy Từ từ 000 đến 1999 : số 1 xuất hiện 1600 lần; các số 0;;2;3;...;9 đều xuất hiện 600 lần
+) từ 2000 đến 2013 có:
S2000 + ...+ S2009 = (2+ 0+ 0 + 0) + (2+0+0+1)...+(2+0+0+9)+(2+0+1+0) +(2+0+1+1)+(2+0+1+2) +(2+0+1+3)
= 2.14 + (1+2+3+..+9) + 1+2+3+4 = 28 + 45 + 10 = 83
Vậy S1 + S2 + S3 + ... + S2013 = 1600 .1 + 600. (0+ 2+3+4+..+9) + 83 = 1600 + 600.44 + 83 = 28083 **** ☺
Ta có
\(\hept{\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a_1}{a_2}=\frac{a_2}{a_3}\\\frac{a_2}{a_3}=\frac{a_3}{a_4}\end{cases}}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(1\right)\)
Ta lại có
\(\frac{a_2^2}{a_3^2}=\frac{a_1.a_3}{a_2.a_4}\)
\(\frac{a_2^3}{a_3^3}=\frac{a_1}{a_4}\left(2\right)\)
Từ (1) và (2)
\(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)