K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

+giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744

29 tháng 11 2015

Giả sử aabb=n^2

<=> a x10^3+ax10^2+bx10 +b=n^2

<=> 11 (100a+b)=n^2

=> n^2 chia hết cho 11

=> n chia hết cho 11

Do n^2 có 4 chữ số nên 

32<n<100

=> n=33, n=44, n=55,...n=99

Thủ vào thì n=88 là thõa mãn 

Vậy số đó là 7744

9 tháng 2 2017

bạn ơi đề kiểu j vậy

1 tháng 11 2017

Giả sử aabb=n2 
<=> a . 10+ a . 102 + b . 10 + b = n2 
<=>11 ( 100a + b ) = n2 
=>n2 chia hết cho 11 
=> n chia hết cho 11 
Do n2 có 4 chữ số nên 
32 < n < 100 
=> n = 33 , n = 44 , n = 55 ,... n = 99 
Thử vào thì n = 88 là thỏa mãn 
Vậy số đó là 7744

 
 
16 tháng 3 2020

7744

Chuc ban hoc tot nha!

18 tháng 11 2016

Gọi số chính phương đó là aabb

Ta có : \(aabb=n^2\)

\(aabb=1000a+100a+10b+b\)

\(=11\left(100a+b\right)=n^2\)

\(=11\left(99a+a+b\right)=n^2\left(1\right)\)

Do aabb chia hết cho 11 nên a + b chia hết cho 11

=> a + b = 11 \(\left(2\right)\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) ta có :

\(n^2=11^2\left(9a+1\right)\)

=>\(9a+1\) là số chính phương

Thử a = 1 ; 2 ; 3 ; ... ; 9 ta thấy chỉ có 7 thỏa mãn

=> a = 7 => b = 4

Vậy số cần tìm là 7744

29 tháng 4 2020

hay vã nồ

11 tháng 7 2015

.+giả sử aabb=n^2 
<=> a . 10+ a . 102 + b . 10 + b = n2 
<=>11 ( 100a + b ) = n2 
=>n2 chia hết cho 11 
=> n chia hết cho 11 
Do n2 có 4 chữ số nên 
32 < n < 100 
=> n = 33 , n = 44 , n = 55 ,... n = 99 
Thử vào thì n = 88 là thỏa mãn 
Vậy số đó là 7744

11 tháng 7 2015

giả sử aabb = \(n^2\)
<=>a . \(10^3\) + a .\(10^2\)+b.10+b = \(n^2\)
<=>11(100a+b)= \(n^2\)
=>\(n^2\) chia hết cho 11
=>n chia hết cho 11
do \(n^2\) có 4 chữ số nên
32 < n <100
=>n = 33 , n = 44 , n = 55 ,...n = 99
thử vào thì n = 88 là thỏa mãn
vậy số đó là 7744

19 tháng 7 2016

Gọi số cần tìm là \(\overline{aabb}=n^2\)

(\(1\le a\le9;0\le b\le9;a,b\in n\))

Ta có

\(n^2=11\left(100a+b\right)=11\left(99a+a+b\right)\left(1\right)\)

Xét thấy \(\overline{aabb}\) chia hết cho 11

 => a+b chia hết cho 11

Mà \(1\le a+b\le18\)

=> a+b=11 (2)

Thay (2) vào (1) ta có

\(n^2=11^2\left(9a+1\right)\)

=> 9a+1 phải là số chính phương

Thử a=1;2;3;....;9 ta thấy chỉ có 7 thỏa mãn vì 9x7+1=64=82

=>b=4

Vậy số cần tìm là 7744

 

 

19 tháng 7 2016

Giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744