Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thế này hả bạn
\(10.\frac{a}{b}=\frac{b-a}{b}\)
Có đúng là vậy ko hay là khác
Theo đề bài ta có:
\(\frac{a}{b-a}=\frac{a}{b}.10\)
\(\frac{a}{b-a}=\frac{10a}{b}\)
\(\Rightarrow a.b=10a.\left(b-a\right)\)
\(10ab-10a^2=ab\)
\(9ab=10a^2\)
\(\Rightarrow a.10=b.9\)
\(\Rightarrow\frac{a}{b}=\frac{9}{10}\)
Vậy phân số cần tìm là \(\frac{9}{10}\)
Ta có: \(\frac{a}{b-a}=10.\frac{a}{b}\)
<=> \(\frac{a}{b}-1=10.\frac{a}{b}\)
<=>\(9.\frac{a}{b}=-1\)
<=> \(\frac{a}{b}=-\frac{1}{9}\)
Theo đề bài ta có : \(\frac{a}{b-a}=\frac{a}{b}.10\)
Suy ra\(\frac{a}{b-a}=\frac{10a}{b}\)
Suy ra ab=10a.(b-a)
ab=10ab-a2
10a2=10ab-ab
10a2=9ab
10a=9b
Suy ra a.10=b.9
Suy ra \(\frac{a}{b}=\frac{9}{10}\)
10.a/b = (b-a)/b
10a =b-a
11a = b
vì a/b là phân số tối giản nên a = 1 ; b = 11
Vậy phân số cần tìm là 1/11