K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

 

Ta có a1 =\(\sqrt{6}>3\) 

     \(\Rightarrow a_2=\sqrt{6+a_1}< \sqrt{6+3}=3\)

     \(\Rightarrow a_{100}=\sqrt{6+a_{99}}< 3\)

Nên 2<a100<3 do đó a100 nằm trong khoảng 2

25 tháng 7 2016

\(\sqrt{6}\)

25 tháng 7 2016
Thay số 6 cuối cùng bằng số 9 ta có biểu thức trên luôn nkỏ hơn 3 do đó phần nguyên bằng 2
25 tháng 7 2016

đặt A=\(\sqrt{6+\sqrt{6+....+\sqrt{6}}}\) bình phương lên r giải 

25 tháng 7 2016

\(2< \sqrt{6}< 3.\)

\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6}}< \sqrt{6+3}=3\)

\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6+\sqrt{6}}}< \sqrt{6+3}=3\)

...

\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+3}=3\)

Vậy phần nguyên của \(A=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\)là 2

26 tháng 7 2016

Ta co : \(\sqrt{6}\)\(\sqrt{4}\)= 2

           \(\sqrt{6}\)<\(\sqrt{9}\)= 3

=> \(\sqrt{6+\sqrt{6}}\)<\(\sqrt{9}\)=3

=> \(\sqrt{6+\sqrt{6+\sqrt{6+...}}}\)<\(\sqrt{36}\)= 6

=> 2 < A < 3

=> phan nguyen cua A la 2

18 tháng 11 2016

à thôi k cần nữa
 

18 tháng 11 2016

Tính giải mà làm cục hứng nha :(

29 tháng 6 2016

Kiếm đâu nhiều bài căn hay vậy? :D

Ta có:

\(2< \sqrt{6}< 3.\)(1)

\(\Rightarrow8< 6+\sqrt{6}< 9\Rightarrow2< \sqrt{8}< \sqrt{6+\sqrt{6}}< \sqrt{9}\)Tức là: \(2< \sqrt{6+\sqrt{6}}< 3\)(2)

Tương tự,

\(2< \sqrt{6+\sqrt{6+\sqrt{6}}}< 3\)

...

\(2< \sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}< 3\)n dấu căn.

Vậy, phần nguyên của An = 2.

8 tháng 8 2015

@Ta chứng minh \(2,5<\sqrt{6+\sqrt{6+\sqrt{6+...}}}\)\(<3\) bằng quy nạp.

+Với n = 1, 2, 3 thì điều trên đúng.

+Giả sử điều trên đúng với n = k ( k≥1 ), tức là \(2,5<\sqrt{6+\sqrt{6+...}}\)\(<3\) với k dấu căn.

+Ta chứng minh điều đó đúng với n = k+1 tức là \(2,5<\sqrt{6+\sqrt{6+...}}\)\(<3\) với k+1 dấu căn

Thật vậy, ta có: \(2,5<\sqrt{6+\sqrt{6+...}}\text{(k dấu căn) }<3\)

\(\Rightarrow8,5<6+\sqrt{6+\sqrt{6+...}}\text{ (k dấu căn) }<9\)

\(\Rightarrow\sqrt{8,5}<\sqrt{6+\sqrt{6+\sqrt{6+...}}}\text{ (k+1 dấu căn)}<3\)

\(\Rightarrow2,5<\sqrt{6+\sqrt{6+..}}\left(k+1\text{ dấu căn}\right)<3\)

Vậy \(2,5<\sqrt{6+\sqrt{6+\sqrt{...}}}<3\) 

@Chứng minh tương tự ta cũng có: \(1,5<\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{...}}}<2\)

Vậy \(2,5+1,5<\)\(\sqrt{...}+\sqrt[3]{...}<3+2\)

\(\Rightarrow4<\)\(\sqrt{...}+\sqrt[3]{....}<\)\(5\)

Vậy phần nguyên là 4.

8 tháng 8 2015

Dòng đầu bổ sung thêm "(n dấu căn)"

20 tháng 5 2021

\(\text{Đặt: }\sqrt{6+\sqrt{6+\sqrt{6+....}}}=a\Rightarrow a^2=6+a\Leftrightarrow a^2-a-6=\left(a-3\right)\left(a+2\right)=0\)

thấy ngay a không thể đạt giá trị âm nên 

a=3 thay vào P=0 (vô lí) -> đề sai.

8 tháng 7 2019

Em thử nhá, ko chắc đâu ạ. Em chỉ làm đc một cái thôi

Gọi biểu thức trên là A

*Chứng minh A > 1/6

Đặt \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\left(\text{n dấu căn}\right)\)

Thì \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{9}}}}=\sqrt{6+3}=3\) (1)

\(x^2-6=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\left(\text{n -1 dấu căn}\right)\)

Biểu thức trở thành \(A=\frac{3-x}{9-x^2}=\frac{1}{3+x}\). Từ (1) suy ra \(A>\frac{1}{3+3}=\frac{1}{6}\)(*)