Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2015}{x-2015}=\frac{y+2017}{y-2017}\)
\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}=\frac{\left(x+2015\right)-\left(x-2015\right)}{\left(y+2017\right)-\left(y-2017\right)}=\frac{2015}{2017}\)( 1 )
\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}=\frac{\left(x+2015\right)+\left(x-2015\right)}{\left(y+2017\right)+\left(y-2017\right)}=\frac{x}{y}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{y}=\frac{2015}{2017}\)
Đặt a=2015/2017
\(A=1-a+a^2-a^3+...+a^{2018}\)
=>\(a\cdot A=a-a^2+a^3-a^4+...+a^{2019}\)
=>\(A\cdot\left(a+1\right)=a^{2019}+1\)
=>\(A=\dfrac{a^{2019}+1}{a+1}\)
Giải:
Có:
\(A=\dfrac{2017^{2016-1}}{2017^{2017-1}}\) và \(B=\dfrac{2017^{2015+1}}{2017^{2016+1}}\)
\(\Rightarrow A=\dfrac{2017^{2016-1}}{2017^{2017-1}}=\dfrac{2017^{2015}}{2017^{2016}}=\dfrac{1}{2017}\)
\(\Rightarrow B=\dfrac{2017^{2015+1}}{2017^{2016+1}}=\dfrac{2017^{2016}}{2017^{2017}}=\dfrac{1}{2017}\)
Vậy \(A=B\)
Chúc bạn học tốt!
Ta có:
\(A=\dfrac{2017^{2016-1}}{2017^{2017-1}}=\dfrac{2017^{2015}}{2017^{2016}}=\dfrac{1}{2017}\)(1)
\(B=\dfrac{2017^{2015+1}}{2017^{2016+1}}=\dfrac{2017^{2016}}{2017^{2017}}=\dfrac{1}{2017}\)(2)
Từ (1) và (2) suy ra:
\(A=B\)
Chúc bạn học tốt!!!
P/s: Xem lại đề xem là +1 vs -1 ở dưới hay bên trên số mũ nha!!
Áp dụng BĐT:`|A|+|B|>=|A+B|`
`=>|x-2017|+|x-2015|=|x-2017|+|2015-x|>=2`
Mà `|x-2016|>=0`
`=>P>=2`
Dấu "=" xảy ra khi $\begin{cases}2015 \leq x \leq 2017\\x=2016\end{cases}$
`<=>x=2016`
Để toi giải thích: Dấu = bđt |A|+|B|≥|A+B| xảy ra khi AB≥0
Nên trong bài dấu bằng xảy ra khi (x-2017)(2015-x)≥0 và x-2016=0
<=> 2017≥x≥2015 và x=2016
=>x=2016 ( 2017≥x≥2015 chỉ là một điều kiện thôi,với cả x không nguyên nên trong khoảng này có rất nhiều x thỏa mãn)
Còn bài bạn dưới, x=2015 hoặc 2017 làm P=3 >2 => không phải giá trị của x để P nhỏ nhất