Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đa thức có nghiệm <=> ( x - 3 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b) Đa thức có nghiệm <=> ( 5x + 5 )( 3x - 6 ) = 0
<=> \(\orbr{\begin{cases}5x+5=0\\3x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
c) 3x( 12x - 4 ) - 9x( 4x - 3 ) = 30
<=> 36x2 - 12x - 36x2 + 27x = 30
<=> 15x = 30
<=> x = 2
\(\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
vậy nghiệm của đa thức là 3 và -2
\(\left(5x+5\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x+5=0\\3x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
vậy nghiệm của đa thức là -1 và 2
\(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2-27x=30\)
\(\Leftrightarrow15x=30\Rightarrow x=2\)
* TÍnh A(x)
Đặt x2 - 3x = t
=> A(x) = (t + 1).(t + 2) - 2 = t2 + 3t = t(t + 3)
A(x) = 0 => t=0 hoặc t = -3
Khi t = 0 => x2 - 3x = 0 => x = 0 hoặc x = 3
Khi t = -3 => x2 -3x = -3 => x2 - 3x + 3 = 0 = ( x - 3/2)2 + 3/4 > 0 với mọi x
* Tính B(x)
B(x) = x2 ( x3 + x2 - 1) .Có 2 nghiệm x = 0 hoặc x=
* Tính C(x)
C(x) = (x - 1) (x2 - 3) = 0
=> x = 1 hoăc x= \(\sqrt{3}\) hoặc x = -\(\sqrt{3}\)
1 ) 3x^2 - 11x + 6 = 3x^2 - 9x - 2x + 6 = 3x( x- 3 ) - 2( x - 3) = ( 3x - 2 )( x - 3 )
2) 8x^2 - 2x - 1 = 8x^2 - 4x + 2x - 1 = 4x( 2x - 1 ) + 2x - 1 = ( 4x + 1 )( 2x - 1 )
3; 8x^2 - 2x - 1 =8x^2 - 4x + 2x - 1 = 4x( 2x - 1 ) + 2x - 1 = ( 4x + 1 )( 2x - 1 )
4; x^4 - 3x^2 - 4 = x^4 - 4x^2 + x^2 - 4 = x^2 ( x ^2 - 4 ) + x^2 - 4 = ( x^2 + 1 )( x^2 - 4 ) = ( x^2 + 1 )( x - 2 )( x + 2)
5) = x^2 ( x + 2 ) - 3 ( x+ 2 ) = ( x^2 - 3 )( x + 2 )
Nhiều quá
2x^2-3x-5=(x+1)(2x-5) => 2x^2-3x-5 co 2 nghiem x=-1 va x=5/2
x^3+4x^2+x-6=(x-1)(x+2)(x+3) =>x^3+4x^2+x-6 co 3 nghiemx=1;x=-2 va x=-3
36x^4+12x^3-17x^2-3x+2=(2x-1)^2(3x-1)(3x+2) => 36x^4+12x^3-17x^2-3x+2 co 3 nghiem x=1/2;x=1/3 va x=-2/3
a,\(2x^2-3x-5\)
=\(2\left(x^2-2x.\frac{3}{4}+\frac{9}{16}\right)-\frac{49}{8}\)
=\(2\left(x-\frac{3}{4}\right)^2-\frac{49}{8}\)
Để g(x) có nghiệm
=>\(2\left(x-\frac{3}{4}\right)^2-\frac{49}{8}\)=0
=>\(2\left(x-\frac{3}{4}\right)^2=\frac{49}{8}\)
=>\(\left(x-\frac{3}{4}\right)^2=\frac{49}{16}\)
=>x=-1 hoặc x=5/2
Vậy x=-1 hoặc x=5/2
a) Ta có A(x) = 0
=> 2x - 6 = 0
=> x = 3
Vậy ngiệm của A(x) là x = 3
b) Ta có : B(x) = 0
=> 52 - 10x = 0
=> 10x = 25
=> x = 2,5
Vậy ngiệm của B(x) là x = 2,5
c) Ta có : C(x) = 0
=> 3x3 - 3x = 0
=> 3x(x2 - 1) = 0
=> \(\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
Vậy x = 0 ; x = 1 ; x = -1 là ngiệm của C(x)
d) Ta có : x4 \(\ge0\forall x\)
=> \(x^4+1\ge1>0\)
Đa thức D(x) vô nghiệm
Đặt `3(x+2)-1/3(6-3x)=0`
`<=>3(x+2)-(2-x)=0`
`<=>3x+2+x-2=0`
`<=>4x=0`
`<=>x=0`
Vậy nghiệm của đa thức là 0
`3x(x-5)-(x+3x)=0`
`<=>3x(x-5)-4x=0`
`<=>x(3x-15-4)=0`
`<=>x(3x-19)=0`
`<=>[(x=0),(3x-19=0):}`
`<=>[(x=0),(x=19/3):}`
Vậy nghiệm đa thức là 0 và `19/3`.
a) Đặt \(3\left(x+2\right)-\dfrac{1}{3}\left(6-3x\right)=0\)
\(\Leftrightarrow3x+6-2+x=0\)
\(\Leftrightarrow4x=-4\)
hay x=-1
b) Đặt 3x(x-5)-(x+3x)=0
\(\Leftrightarrow3x^2-15x-4x=0\)
\(\Leftrightarrow x\left(3x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{3}\end{matrix}\right.\)