Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây là phương trình vô định
2x+5y=13<=>2x=13-5y<=>x=\(\frac{13-5y}{2}=2-2y+\frac{9-y}{2}\)
đặt \(\frac{9-y}{2}=t\)
=>y=9-2t
the vo pt tính t rui tinh x va y
x+y+z=xyz+1
Giả sử x lớn hơn =y lớn hơn =z
=> 3x> xyz+1 >xyz
=> 3> yz
do y,z nguyên dương nnee tìm đc y,z
Đặt \(\frac{1}{y}=a\)
\(\int^{2x+3a=3}_{x-2a=5}\)
\(\Leftrightarrow\int^{2x+3a=3}_{2x-4a=10}\)
\(\Leftrightarrow\int^{7a=-7}_{x-2a=5}\)
\(\Leftrightarrow\int^{a=-1}_{x+2=5}\)
\(\Leftrightarrow\int^{\frac{1}{y}=-1}_{x=3}\)
\(\Leftrightarrow\int^{x=3}_{y=-1}\)
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
\(PT\Leftrightarrow9x^2+16x+96=9x^2+256y^2+576-96xy+768y-144x.\)
\(\Leftrightarrow256y^2-160x-96xy+768y+480=0\)
\(\Leftrightarrow8y^2-5x-3xy+24y+15=0\)
Đến chỗ này phân tích kiểu j được nhỉ
\(2x+5y=13\Leftrightarrow x=\frac{13-5y}{2}\Rightarrow\)y là số lẻ.
Đặt \(y=2z+1\left(z\in Z\right)\Rightarrow x=4-5z\)
Vậy tập nghiệm nguyên của phương trình là \(\cdot\left(x;y\right)=\left(4-5z;2z+1\right)\)với z nguyên