Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi phương trình đã cho là phương trình bậc hai a ẩn x, y là tham số. Dùng điều kiện có nghiệm cuả phương trình để giải
pt <=> \(16x^2+32xy+46y^2+32x-88y=2360\)
<=> \(\left(4x+4y+4\right)^2+30y^2-120y+120=2496\)
<=> \(\left(4x+4y+4\right)^2+30\left(y^2-4y+4\right)=2496\)
<=> \(8\left(x+y+1\right)^2+15\left(y-2\right)^2=2496\)
Có: \(15\left(y-2\right)^2\)là 15 lần của 1 SCP
=> \(0\le\left(y-2\right)^2\le\frac{2496}{15}\)
Mà \(\left(y-2\right)^2\)là 1 SCP
=> \(\left(y-2\right)^2=0^2;1^2;...;12^2\)
Đến đây bạn xét từng trường hợp là ra rùi !!!!!!
a: =>(4x-1)2=0
=>4x-1=0
hay x=1/4=0,25
b: \(6x^2-10x-1=0\)
\(\Delta=\left(-10\right)^2-4\cdot6\cdot\left(-1\right)=100+24=124>0\)
Do đó; Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{10-2\sqrt{31}}{12}\simeq-0,09\\x_2=\dfrac{10+2\sqrt{31}}{12}\simeq1,76\end{matrix}\right.\)
c: \(5x^2+24x+9=0\)
\(\Delta=24^2-4\cdot5\cdot9=396>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-24-2\sqrt{99}}{10}\simeq-4,39\\x_2=\dfrac{-24+2\sqrt{99}}{10}\simeq-0,41\end{matrix}\right.\)
d: \(16x^2-10x+1=0\)
\(\Delta=\left(-10\right)^2-4\cdot16\cdot1=100-64=36>0\)
Do đó: Phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{10-6}{64}=\dfrac{4}{64}=\dfrac{1}{16}\\x_2=\dfrac{10+6}{64}=\dfrac{1}{4}\end{matrix}\right.\)
Thay x=\(\frac{1}{2}\) vào phương trình ta có
\(8.\left(\frac{1}{2}\right)^2-8.\frac{1}{2}+m^2+1=0\)
\(\Leftrightarrow8.\frac{1}{4}-4+m^2+1=0\)
\(\Leftrightarrow2-4+m^2+1=0\)
\(\Leftrightarrow m^2-1=0\)
\(\Leftrightarrow m^2=1\Rightarrow m=\pm1\)
Thay m=1 vào phương trình ta có
\(8x^2-8x+1^2+1=0\)
\(\Leftrightarrow8x^2-8x+2=0\)
Ta có \(\Delta'=\left(-4\right)^2-8.2=16-16=0\)
\(\Rightarrow\)Phương trình có nghiệm kếp \(x_1=x_2=\frac{-b'}{a}=-\frac{-4}{8}=\frac{1}{2}\)
Thay m=-1 vào ta có kết quả tương tụ
Vậy nghiệm còn lại là \(\frac{1}{2}\)
Nhớ k cho mình nha
Câu 1:
Đặt phương trình là (1)
ĐK: \(3x-16y-24\ge0\)
\(3x-16y-24=\sqrt{9x^2+16x+32}\Leftrightarrow\left(3x-16y-24\right)^2=9x^2+16x+32\)
\(\Leftrightarrow9\left(3x-16y-24\right)^2=9\left(9x^2+16x+32\right)\)\(\Leftrightarrow\left(9x-48y-72\right)^2=81x^2+144x+288\)
Với x, y nguyên thì (3y+5) là ước của (-7) và chia cho 3 dư 2
=> (3y+5)=-1 hoặc (3y+5)=-7
+ TH1: \(\left(3y+5\right)=-1\Leftrightarrow y=-2\Rightarrow x=-1\)
+ TH2: \(\left(3y+5\right)=-7\Leftrightarrow y=-4\Rightarrow x=-7\)
Vậy các cặp nghiệm nguyên của (x;y) là: (-1;-2); (-7;-4)
\(\Leftrightarrow\left(9x-48y-72\right)^2=\left(9x+8\right)^2+224\)
\(\Leftrightarrow\left(9x-48y-72\right)^2-\left(9x+8\right)^2=224\)
\(\Leftrightarrow\left(9x-48y-72+9x-8\right)\left(9x-48y-72-9x-8\right)=224\)
\(\Leftrightarrow\left(18x-48y-64\right)\left(-48y-80\right)=224\)
\(\Leftrightarrow-32\left(9x-24y-32\right)\left(3y+5\right)=224\)
\(\Leftrightarrow\left(9x-24y-32\right)\left(3y+5\right)=-7\)
giả sử a là nghiệm chung của 2 phương trình
\(x^2+\text{ax}+bc=0\left(1\right)\) và \(x^2+bx+ca=0\left(2\right)\)
Ta có: \(\hept{\begin{cases}a^2+a\alpha+bc=0\\a^2+b\alpha+ca=0\end{cases}}\)
\(\Rightarrow\alpha\left(a-b\right)+c\left(b-a\right)=0\Rightarrow\left(a-c\right)\left(a-b\right)=0\Rightarrow\alpha=c\ne0\)
Thay \(\alpha=c\)vào (1) ta có: \(c^2+ac+bc=0\Rightarrow c\left(a+b+c\right)=0\Rightarrow a+b+c=0\)
Mặt khác, theo định lý Viet phương trình(1) còn có nghiệm nữa là b, phương trình(2) còn có nghiệm nữa là a. Theo định lý Viet đảo, a và b là hai nghiệm của phương trình \(x^2-\left(a+b\right)x+ab=0\Leftrightarrow x^2+cx+ab=0\left(\text{đ}pcm\right)\)