Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Tìm x, y nguyên tố thoả mãn
y2 – 2x2 = 1
Hướng dẫn:
Ta có y2 – 2x2 = 1 ⇒ y2 = 2x2 +1 ⇒ y là số lẻ
Đặt y = 2k + 1 (với k nguyên).Ta có (2k + 1)2 = 2x2 + 1
⇔ x2 = 2 k2 + 2k ⇒ x chẵn , mà x nguyên tố ⇒ x = 2, y = 3
2: Tìm nghiệm nguyên dương của phương trình
(2x + 5y + 1)(2|x| + y + x2 + x) = 105
Hướng dẫn:
Ta có: (2x + 5y + 1)(2|x| + y + x2 + x) = 105
Ta thấy 105 lẻ ⇒ 2x + 5y + 1 lẻ ⇒ 5y chẵn ⇒ y chẵn
2|x| + y + x2 + x = 2|x| + y + x(x+ 1) lẻ
có x(x+ 1) chẵn, y chẵn ⇒ 2|x| lẻ ⇒ 2|x| = 1 ⇒ x = 0
Thay x = 0 vào phương trình ta được
(5y + 1) ( y + 1) = 105 ⇔ 5y2 + 6y – 104 = 0
⇒ y = 4 hoặc y = ( loại)
Thử lại ta có x = 0; y = 4 là nghiệm của phương trình
16: Tìm nghiệm nguyên của phương trình
x2 –xy + y2 = 3
Hướng dẫn:
Ta có x2 –xy + y2 = 3 ⇔ (x- )2 = 3 –
Ta thấy (x- )2 = 3 – ≥ 0
⇒ -2 ≤ y ≤ 2
⇒ y= ± 2; ±1; 0 thay vào phương trình tìm x
Ta được các nghiệm nguyên của phương trình là :
(x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1)
<=>x2(x+y)+y2(x+y)=2001
<=>(x+y)(x2+y2)=2001
=>x+y, x2+y2 E Ư(2001)={1;3;23;29;69;87;667;2001}
Rồi xét các trường hợp => x,y
Vì 105 là số nguyên lẻ nên 2x+5y+1 và 2020lxl+y+x2+x là số lẻ
=> 5y chẵn => y chẵn
Có:x2+x=x(x+1) là số chẵn nên 2020lxl lẻ
=>x=0
Thay x=0 vào phương trình (2x+5y+1)(2020lxl+y+x2+x)=105 ta được:
\(\left(5y+1\right)\left(y+1\right)=105\Leftrightarrow5y^2+6y-104=0\)
Do \(y\in Z\)nên ta tìm ra y=4
Vậy phương trình có nghiệm là \(\left(x;y\right)=\left(0;4\right)\)
Xét \(y=0\Rightarrow x=\pm8\)
Với \(y\ge1\), ta thấy \(x⋮6\) và \(y⋮2\) (vì nếu \(y\) lẻ thì \(3^y\) chia 4 dư 3, vô lí)
\(x=3k,y=2l\left(k,l\inℤ,l\ge2\right)\) (nếu \(l=1\) thì \(y=2\Rightarrow x^2=72\), vô lí)
pt đã cho trở thành \(k^2=3^{2l-2}+7\)
\(\Leftrightarrow k^2-\left(3^{l-1}\right)^2=7\)
\(\Leftrightarrow\left(k+3^{l-1}\right)\left(k-3^{l-1}\right)=7\)
Do \(k+3^{l-1}>k-3^{l-1}\) nên ta xét 2TH
TH1: \(\left\{{}\begin{matrix}k+3^{l-1}=7\\k-3^{l-1}=1\end{matrix}\right.\). Cộng theo vế \(\Rightarrow2k=8\Rightarrow k=4\Rightarrow x=3k=12\) \(\Rightarrow3^y=x^2-63=144-63=81\Rightarrow y=4\)
Vậy ta tìm được cặp \(\left(x,y\right)=\left(12,4\right)\), thử lại thấy thỏa mãn.
TH2: \(\left\{{}\begin{matrix}k+3^{l-1}=-1\\k-3^{l-1}=-7\end{matrix}\right.\)
Cộng theo vế \(\Rightarrow2k=-8\Rightarrow k=-4\Rightarrow x=-12\)
\(\Rightarrow3^y=x^2-63=144-63=81\Rightarrow y=4\)
Vậy ta tìm được thêm cặp số \(\left(x;y\right)=\left(-12;4\right)\). Như vậy, pt đã cho có các nghiệm nguyên \(\left(x;y\right)\in\left\{\left(\pm8;0\right);\left(\pm12;4\right)\right\}\)