Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = 2020 => 2021 = x + 1
x2020 - 2021x2019 + 2021x2018 - 2021x2017 + ... + 2021x2 - 2021x + 1
= x2020 - ( x + 1 )x2019 + ( x + 1 )x2018 - ( x + 1 )x2017 + ... + ( x + 1 )x2 - ( x + 1 )x + 1
= x2020 - x2020 - x2019 + x2019 + x2018 - x2018 - x2017 + ... + x3 + x2 - x2 - x + 1
= -x + 1 = -2020 + 1 = -2019
Vậy giá trị của biểu thức = -2019
f(2020) = 20206 - 2021 × 20205 + 2021 × 20204 - 2021×20203 + 2021×20202 - 2021 × 2020 + 2021 = 1
Chúc bn học tốt !!!!!!!
M(x) = 2x - 6
M(x) = 0 <=> 2x - 6 = 0
<=> 2x = 6
<=> x = 3
Vậy nghiệm của đa thức là 3
N(x) = x2 + 2x + 2020
N(x) = x2 + 2x + 1 + 2019
= ( x + 1 )2 + 2019
Ta có \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2019\ge2019\)
=> N(x) vô nghiệm
a)\(M\left(x\right)=2x-6\)
ta có \(M\left(x\right)=0\)
hay\(2x-6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
vậy nghiệm của đa thức m(x) là 3
b) \(N\left(x\right)=x^2+2x+2020\)
ta có\(N\left(x\right)=0\)
hay\(x^2+2x+2020=0\)
\(\Leftrightarrow x^2+2x=-2020\)
\(\Leftrightarrow x.x+2x=-2020\)
\(\Leftrightarrow x\left(x+2\right)=-2020\)
còn lại tích của -2020 là bao nhiêu cậu thay vào
Ta có : \(x=2022\Rightarrow x-1=2021\)
hay \(B=x^{10}-\left(x-1\right)x^9-\left(x-1\right)x^8-...-\left(x-1\right)x^2-\left(x-1\right)x+5\)
\(=x^{10}-x^{10}+x^9-x^9+x^8-...-x^3+x^2-x^2+x+5\)
\(=x+5\Rightarrow B=2022+5=2027\)
Vậy với x = 2022 thì B = 2027
x=2020 nên x+1=2021
\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)
\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)
=x-2020=0
Đặt \(A\left(x\right)=x^2-2021x+2020=0\)
\(\Leftrightarrow x^2-2020x-x+2020=0\)
\(\Leftrightarrow x\left(x-1\right)-2020\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2020\right)\left(x-1\right)=0\Leftrightarrow x=\orbr{\begin{cases}x=2020\\x=1\end{cases}}\)
Vậy nghiệm của phương trình là x = 1 ; x = 2020