Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
a. Rút gọn đa thức và sắp xếp theo thứ tự giảm dần của biến..
\(A\left(x\right)=13x^4+3x^2+15x+7x^2-10x^4-7x-6-8x+15\)
\(=\left(13x^4-10x^4\right)+\left(3x^2+7x^2\right)+\left(15x-7x-8x\right)+\left(15-6\right)\)
\(=3x^4+10x^2+9.\)
\(B\left(x\right)=5x^4+10-5x^2-18+3x-10x^2-3x-4x^4\)
\(=\left(5x^4-4x^4\right)+\left(-5x^2-3x^2\right)+\left(3x-3x\right)+\left(10-18\right)\)
\(=x^4-8x^2-8\)
b. Tính M = A(x) + B(x) ; N = A(x) - B(x)
\(M=A\left(x\right)+B\left(x\right)=\left(3x^4+10x^2+9\right)+\left(x^4-8x^2-8\right)\)
\(=\left(3x^4+x^4\right)+\left(10x^2-8x^2\right)+\left(10-8\right)\)
\(=4x^4+2x^2+2\)
\(N=A\left(x\right)-B\left(x\right)=\left(3x^4+10x^2+9\right)-\left(x^4-8x^2-8\right)\)
\(=3x^4+10x^2+9-x^4+8x^2+8\)
\(=\left(3x^4-x^4\right)+\left(10x^2+8x^2\right)+\left(9+8\right)\)
\(=2x^4+18x^2+17\)
Bài 1: (0,5 điểm) Cho đa thức Ax x 2x 4 4 2 . Chứng tỏ rằng Ax 0 với mọi x R .
Bài 2: (3 điểm) Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm. a) Tính độ dài AC. b) Vẽ đường phân giác BD của ΔABC và gọi E là hình chiếu của D trên BC. Chứng minh ΔABD = ΔEBD và AE BD. c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: ΔABC = ΔAFC. d) Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng.
a) A(x)=5x+10
5x+10=0
5x=-10
x=-2
b) B(x)=x^2+7x
x^2+7x=0
x^2=0-7x
=>x=0 ; -7
c) C(x)=x^3-9x
x^3-9x=0
x^3=0-9x
=> x=3;0
a, A(x) = 5x + 10
Cho 5x + 10 = 0
5x = 0 - 10 = - 10
x = -10 : 5 = -2
Vậy x = -2 là nghiệm của đâ thức trên
b, B(x) = x2 + 7x
Cho x2 + 7x = 0
x . x + 7 . x = 0
x . (x + 7) = 0
=> x = 0 hoặc x + 7 = 0
* x = 0 * x + 7 = 0
x = 0 - 7
x = -7
Vậy x = 0; x = -7 là nghiệm của đa thức trên.
c, C(x) = x3 - 9x
Cho x3 - 9x = 0
=> x . x . x - 9x = 0
x . (x . x - 9) = 0
=> x = 0 hoặc x2 - 9 = 0
* x = 0 * x2 - 9 = 0
x2 = 0 + 9 = 9
x = căn 9 hoặc âm căn 9
=> x = 3 hoặc x= -3
Vậy x = 0; x = 3; x = -3 là nghiệm của đa thức trên.
a) \(x^2+7x-8=0\Leftrightarrow\left(x+8\right)\left(x-1\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-8\\x=1\end{array}\right.\)
b) \(\left(x-3\right)\left(16-4x\right)=0\Leftrightarrow4\left(x-3\right)\left(4-x\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=4\end{array}\right.\)
c) \(5x^2+9x+4=0\Leftrightarrow\left(x+1\right)\left(5x+4\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-\frac{4}{5}\end{array}\right.\)
a)A(x)=3x5-12x3-6x2+11x+9
B(x)=-3x5+12x3+7x2-9x-7
b)A(x)+B(x)=
3x5-12x3-6x2+11x+9
+
-3x5+12x3+7x2-9x-7
= x2+2x+2
Vậy C(x)=x2+2x+2
A(x)-B(x)=
3x5-12x3-6x2+11x+9
-
-3x5+12x3+7x2-9x-7
= 6x5-24x3-13x2+20x+16
Vậy D(x)=6x5-24x3-13x2+20x+16
c)C(x)=x2+2x+2=x2+2x+1+1=(x+1)2+1
Do (x+1)2\(\ge0\forall x\in R\)
=>C(x)=(x+1)2+1\(\ge1\forall x\in R\)
a, Đặt \(A\left(x\right)=12x-8=0\)
\(\Leftrightarrow12x=8\Leftrightarrow x=\frac{2}{3}\)
b, Ta có : \(B\left(x\right)=9x^2+8x-7x^2-3x-18-5x\)
Đặt \(2x^2-16x-18=0\)
\(\Leftrightarrow2\left(x^2-8x-9\right)=0\Leftrightarrow2\left(x-9\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=9;x=-1\)
a) \(A\left(x\right)=0\Leftrightarrow12x-8=0\Rightarrow x=\frac{2}{3}\)
b) \(B\left(x\right)=0\Leftrightarrow2x^2-18=0\)
\(\Leftrightarrow x^2=9\Rightarrow x=\pm3\)