Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, x3-2x2+x=0
=> x(x-1)2=0
=>\(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b,4x2-3x-7=(x+1)(4x-7)=0
=>\(\orbr{\begin{cases}x+1=0\\4x-7=0\end{cases}}\)=>\(\orbr{\begin{cases}x=-1\\x=\frac{7}{4}\end{cases}}\)
a) Ta có: \(f\left(1\right)=3.1^3-2.1^2+4.1-5\)
\(=3-2+4-5\)
\(=0\)
\(\Rightarrow f\left(x\right)⋮x-1\) ( chỗ này khó hiểu chút nhé bạn có gì hỏi mình)
Vậy x-1 là nghiệm của đa thức
b) Ta có: \(f\left(1\right)=a.1^3+b.1^2+c.1+d\)
\(=a+b+c+d=0\)
\(\Rightarrow f\left(x\right)⋮x-1\)
Vậy x-1 là nghiệm của đa thức
Cách 2:
\(f\left(x\right)=3x^3-2x^2+4x-5\)
\(=3x^3-3x^2+x^2-x+5x-5\)
\(=3x^2.\left(x-1\right)+x.\left(x-1\right)+5.\left(x-1\right)\)
\(=\left(x-1\right).\left(3x^2+x+5\right)\)
\(\Rightarrow f\left(x\right)⋮x-1\)
a) \(f\left(1\right)=5-2-3+4\)
\(=0\)
\(\Rightarrow f\left(1\right)⋮x-1\)
Vậy ...
a) \(f\left(-1\right)=5.\left(-1\right)^3-2.\left(-1\right)^2-3.\left(-1\right)+4\)
\(=-5-2+3+4\)
\(=0\)
Vậy x=-1 là nghiệm của đa thức f(x)
b) \(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d\)
\(=-a+b-c+d\)
\(=-\left(a-b+c-d\right)\)
\(=-\left[\left(a+c\right)-\left(b+d\right)\right]\)
\(=0\)( vì a+c=b+d nên (a+c) - (b+d) =0 )
Vậy x=-1 là nghiệm của đa thức f(x)
a) \(x^3-2x^2+x=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy....
b) \(-x^4-x^2-3=0\)
\(\Leftrightarrow x^4+x^2+3=0\)
\(\Leftrightarrow\left(x^2\right)^2+2\cdot x^2\cdot\frac{1}{2}+\frac{1}{4}+\frac{11}{4}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\frac{-11}{4}\)( vô lý )
Đa thức vô nghiệm
a) Đặt f(x) =\(\left(2x^2-9\right)\left(-x^2+1\right)\)
Ta có: \(f\left(x\right)=0\Leftrightarrow\left(2x^2-9\right)\left(-x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-9=0\\-x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x^2=9\\-x^2=-1\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=\frac{9}{2}\\x^2=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{9}{2}}\\x=\pm1\end{cases}}}\)
Vậy \(x\in\left\{\pm\sqrt{\frac{9}{2}};\pm1\right\}\)là nghiệm của đa thức f(x)
1) \(3x^2-4x-7=0\)
\(\Leftrightarrow3x^2+3x-7x-7=0\)
\(\Leftrightarrow3x\left(x+1\right)-7\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)
Vậy....
2) \(x^3-9x=0\)
\(\Leftrightarrow x\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
Vậy....
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
A) 4x^2 - 3x -7 = 4x^2 + 4x - 7x - 7
=(x +1)(4x - 7) =0
=>x+1=0 <=> x=-1
hoac 4x-7=0 <=> x=7/4
Nhu cau sau lam tuong tu