K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 11 2019

a/ \(x^2-2x-3=-m\)

Đặt \(f\left(x\right)=x^2-2x-3\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)

\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)

b/ \(-x^2+2mx-m+1=0\)

\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

Để pt có 2 nghiệm đều âm

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

NV
11 tháng 11 2019

c/ \(f\left(x\right)=2x^2-x-1=m\)

Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)

\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)

\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)

d/ \(f\left(x\right)=x^2-2x+1=m\)

Xét \(f\left(x\right)\) trên \((0;2]\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)

Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)

\(x^2+4x+3=x-m\)

\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)

Xét hàm \(f\left(x\right)\)

\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)

Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)

Mặt khác \(x^2+3x+m+3=0\)

Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:

\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)

Từ (1) và (2) suy ra ko tồn tại m thỏa mãn

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Đặt \(\sqrt{3x^2-2x-1}=a; 2x=b(a\geq 0)\)

\(\Rightarrow b^2-a^2=x^2+2x+1\)

PT đã cho trở thành:

\(b^2+1=a+b\sqrt{b^2-a^2+1}\)

\(\Leftrightarrow (b^2-b\sqrt{b^2-a^2+1})+(1-a)=0\)

\(\Leftrightarrow b(b-\sqrt{b^2-a^2+1})-(a-1)=0(*)\)

Nếu \(b+\sqrt{b^2-a^2+1}=0\)

\(\Rightarrow \left\{\begin{matrix} b\leq 0\\ b^2=b^2-a^2+1\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b\leq 0\\ a^2-1=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ 3x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1-\sqrt{7}}{3}\) (thử lại thấy không thỏa mãn)

Nếu \(b+\sqrt{b^2-a^2+1}\neq 0\) thì:

\((*)\Leftrightarrow b.\frac{a^2-1}{b+\sqrt{b^2-a^2+1}}-(a-1)=0\)

\(\Leftrightarrow (a-1)\left(\frac{b(a+1)}{b+\sqrt{b^2-a^2+1}}-1\right)=0\)

\(\Leftrightarrow (a-1).\frac{ba-\sqrt{b^2-a^2+1}}{b+\sqrt{b^2-a^2+1}}=0\)

\(\Rightarrow \left[\begin{matrix} a=1(1)\\ ba=\sqrt{b^2-a^2+1}(2)\end{matrix}\right.\)

Với (1): \(\Rightarrow a^2=1\Rightarrow 3x^2-2x-2=0\Rightarrow x=\frac{1\pm \sqrt{7}}{3}\) . Thử lại chỉ thấy \(x=\frac{1+\sqrt{7}}{3}\) thỏa mãn

Với (2): \(\Rightarrow b^2a^2=b^2-a^2+1\Rightarrow a^2(b^2+1)-(b^2+1)=0\)

\(\Rightarrow (b^2+1)(a^2-1)=0\Rightarrow a^2=1\) (giống như trên ta chỉ thu được \(x=\frac{1+\sqrt{7}}{3}\) )

Vậy..........

30 tháng 7 2016

lập đen ta ra r tính đen ta >=0 là dc

13 tháng 7 2016

\(x^2-2x+\sqrt{2x^2+1}=\sqrt{4x+1}\) (ĐKXĐ : \(x\ge-\frac{1}{4}\) )

\(\Leftrightarrow2x^2-4x+2\sqrt{2x^2+1}-2\sqrt{4x+1}=0\)

\(\Leftrightarrow\left[\left(2x^2+1\right)+2\sqrt{2x^2+1}+1\right]-\left[\left(4x+1\right)+2\sqrt{4x+1}+1\right]=0\)

\(\Leftrightarrow\left(\sqrt{2x^2+1}+1\right)^2-\left(\sqrt{4x+1}+1\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{2x^2+1}+1-\sqrt{4x+1}-1\right)\left(\sqrt{2x^2+1}+1+\sqrt{4x+1}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x^2+1}-\sqrt{4x+1}\right)\left(\sqrt{2x^2+1}+\sqrt{4x+1}+2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{2x^2+1}-\sqrt{4x+1}=0\\\sqrt{2x^2+1}+\sqrt{4x+1}+2=0\end{array}\right.\)

Vì \(\sqrt{2x^2+1}+\sqrt{4x+1}+2>0\) với mọi \(x\ge-\frac{1}{4}\) nên vô nghiệm.

Do đó ta xét \(\sqrt{2x^2+1}-\sqrt{4x+1}=0\Leftrightarrow2x^2+1=4x+1\Leftrightarrow2x\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\) (thoả mãn)

Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)