K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2016

A= \(\frac{n+3}{n-2}\)=\(\frac{\left(n-2\right)+5}{n-2}\)=1+\(\frac{5}{n-2}\)

Để A là phân số tối giản khi n-2 \(\pm\) Ư(5)

Vậy n-2\(\pm\)5k

<=> n\(\pm\)5h+2

16 tháng 5 2016

mình chỉnh lại đáp án nhé

n-2\(\pm\)Ư(5)

n-2\(\pm\)\(\left\{-1;1;-5;5\right\}\)

=> n\(\pm\)\(\left\{1;3;-3;7\right\}\)

21 tháng 7 2015

goi d=UCLN(n3+2n;n4+3n2+1)          (d\(\in\)N*)

\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d

n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)\(\in\)U(1)ma d lon nhat , d\(\in\)Nnen d=1 

do đó phân số trên là tối giản

9 tháng 3 2018

giỏi lắm hoàng cảm ơn nhiều

12 tháng 2 2020

Gọi (12n + 5;18n + 7) = d

=> \(\hept{\begin{cases}12n+5⋮d\\18n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(12n+5\right)⋮d\\2\left(18n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}36n+15⋮d\\36n+14⋮d\end{cases}}}\)

=> 36n + 15n - (36n + 14) \(⋮\)d

=> 1  \(⋮\)d

=> d \(\in\)Ư(1)

Vì    \(n\inℤ\Rightarrow\hept{\begin{cases}12n+5\inℤ\\18n+7\inℤ\end{cases}\Rightarrow d\inℤ}\)      

Khi đó d \(\in\left\{1;-1\right\}\)

=> 12n + 5 ; 18n + 7 là 2 số nguyên tố cùng nhau

=> \(\frac{12n+5}{18n+7}\)là phân số tối giản 

22 tháng 3 2019

\(\frac{18n+7}{21n+7}=\frac{18}{21}\cdot\frac{n}{n}+1=\frac{6}{7}\cdot1+1=\frac{6}{7}+1\)1

đúng k

22 tháng 2 2019

giả sử 18n+3 và 21n+7 cùng rút gọn được cho số nguyên tố p

suy ra 6(21n+7) - 7(18n+3) chia hết cho p hay 21 chia hết cho p

vậy p thuộc {3;7}. nhưng 21n +7 không chia hết cho 3 nên suy ra 18n+3 chia hết cho 7

do đó 18n +3 -21 chia hết cho 7 hay 18(n-1) chia hết cho 7.từ đó n-1 chia hết cho 7

vậy n=7k +1 (k thuộc N) thì phân số 18n+3/21n+7 có thể rút gọn được.

22 tháng 2 2019

BÀI NÀY MK BIẾT LÀM NHƯNG KO BIẾT CÁCH TRÌNH BÀY THÔI 

BAN CHƯA RÚT GỌN HẲN