Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 4n-5 chia hết cho n-3 nên 4n - 12 + 7 chia hết cho n-3
Vì 4n - 12 = 4.(n-3) chia hết cho n-3,4n-12+7 chia hết cho n-3
Suy ra 7 chia hết cho n-3
Suy ra n-3 thuộc ước của 7
Suy ra n-3 thuộc {1;-1;7;-7}
Suy ra n thuộc{4;2;10;-4}
Vậy _______________________
b)Vì n^2 + 4n + 11 chia hết cho n+4 nên n(n+4) + 11 chia hết cho n+4
Mà n(n+4) chia hết cho n+4 nên 11 chia hết cho n+4
Suy ra n+4 thuộc ước của 11
Suy ra n+4 thuộc {1;-1;11;-11}
Suy ra n thuộc {-3;-5;7;-15}
Vậy ________________
a)Ta có :74n-1=...1-1=...0\(⋮\)5
Vậy 74n-1\(⋮\)5
b)Ta có 34n+1+2=34nx3+2=...1x3+2=...3+2=...5\(⋮\)5
Vậy ...
c)Ta có :24n+1+3=24nx2+3=...6x2+3=...2+3=...5\(⋮\)5
Vậy ...
d)Ta có :24n+2+1=24nx22+1=...1x4+1=...4+1=...5\(⋮\)5
Vậy ...
e)Ta có :92n+1+1=92nx9+1=...1x9+1=...9+1=...0\(⋮\)10
Vậy
f)mik ko biết làm
g)mik cũng ko biết làm
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
a) n+3 chia hết cho n^2-7
=> n(n+3) chia hết cho n^2-7
=> n^2+3n chia hết cho n^2-7
=> n^2-7 + 3n+7 chia hết cho n^2-7
=> 3n+7 chia hết cho n^2-7
do 3n+9=3(n+3) chia hết cho n^2-7
=> 3n+9-3n-7 chia hết cho n^2-7
=> 2 chia hết cho n^2-7
=> n=3
thử lại thấy thỏa mãn!
b) ta có: 2n^2+5=2n^2+4n-4n-8+13=2n(n+2)-4(n+2)+13 chia hết cho n+2
=> 13 chia hết cho n+2
=> n+2=13 hoặc n+2=1
n+2=13 => n=11
n+2=1 => n=-1
Lời giải:
a. Ta có:
$7^4\equiv 1\pmod 5$
$\Rightarrow 7^{4n}\equiv 1^n\equiv 1\pmod 5$
$\Rightarrow 7^{4n}-1\equiv 0\pmod 5$
Hay $7^{4n}-1\vdots 5$
b.
$2^4\equiv 1\pmod 5$
$\Rightarrow 2^{4n+1}=2.2^{4n}\equiv 2.1^n\equiv 2\pmod 5$
$\Rightarrow 2^{4n+1}+3\equiv 2+3\equiv 5\equiv 0\pmod 5$
$\Rightarrow 2^{4n+1}+3\vdots 5$
a) ta thấy 4n đã chia hết cho n rồi => muốn biểu thức chia hết cho n <=> 5 chia hết cho n <=> n thuộc Ư(5) <=> n thuộc (+-1;+-5)
b) \(n^2-7=n^2-9+2=\left(n-3\right)\left(n+3\right)+2\). ta thấy (n-3)(n+3) đã chia hết cho n+3 rồi => muốn biểu thức chia hết cho n+3 <=> 2 chia hết cho n+3 <=> n+3 thuộc Ư(2)<=> n+3 thuộc (+-1; +-2)
đến đây lập bảng tìm n nha. kết quả: n thuộc (-2;-4;-1;-5)
c) dễ thấy n+3 chia cho n^2-7 dư n+3 => muốn chia hết thì n+3=0 <=> n=-3