K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

a) n + 4 chia hết cho n 
vì n chia hết cho n =>để n + 4 chia hết cho n thì 4 phải chia hết cho n 
=>n Є {1;2;4} 

29 tháng 12 2018

b/ 3n + 7 chia hết cho n 
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n 
=>n Є {1;7} 

25 tháng 7 2016

a) 5n + 11 chia hết cho 3n + 4

=> 3.(5n + 11) chia hết cho 3n + 4

=> 15n + 33 chia hết cho 3n + 4

=> 15n + 20 + 13 chia hết cho 3n + 4

=> 5.(3n + 4) + 13 chia hết cho 3n + 4

Do 5.(3n + 4) chia hết cho 3n + 4 => 13 chia hết cho 3n + 4

Mà 3n + 4 chia 3 dư 1 => \(3n+4\in\left\{1;13\right\}\)

=> \(3n\in\left\{-3;9\right\}\)

=> \(n\in\left\{-1;3\right\}\)

b) 2n2 + 3n - 11 chia hết cho n + 2

=> 2n2 + 4n - n - 2 - 9 chia hết cho n + 2

=> 2n.(n + 2) - (n + 2) - 9 chia hết cho n + 2

=> (n + 2).(2n - 1) - 9 chia hết cho n + 2

Do (n + 2).(2n - 1) chia hết cho n + 2 => 9 chia hết cho n + 2

=> \(n+2\in\left\{1;-1;3;-3;9;-9\right\}\)

=> \(n\in\left\{-1;-3;1;-5;7;-11\right\}\)

Câu b bn ý chép sai đề 1 chút, mk đã hỏi bn ý và sửa lại nên lm như trên

25 tháng 7 2016

5n+11 chia hết cho 3n+4

=>15n+33 chia hết cho 3n+4

mà 15n+20 chia hết cho 3n+4

=>13 chia hết cho 3n+4

=>3n+4=13,1,-1,-13

=>3n=9,-3,-5,-16

=>n=3,-1

8 tháng 6 2016

Câu 1.

Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.

  • Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
  • Số dư của phép chia này là 7 nên ta có:

\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)

Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:

\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)

  • Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.

\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)

\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)

  • Từ (1) và (2) ta có:

\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)

  • Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành  \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
  • Viết kết quả các phép chia này ta được:

\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)

27 tháng 10 2023

a) Sửa đề:

A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ chia hết cho 21 (n ∈ ℕ)

Ta có:

A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ

= 5ⁿ.(5² + 5 + 1)

= 5.31 ⋮ 31

Vậy A ⋮ 31

b) Sửa đề: B = 3ⁿ⁺² + 3ⁿ - 2ⁿ⁺²  - 2ⁿ

= 3ⁿ(3² + 1) - 2ⁿ.(2² + 1)

= 3.10 + 2ⁿ⁻¹.2.5

= 10.(3 + 2ⁿ⁻¹) ⋮ 10

Vậy B ⋮ 10

10 tháng 7 2016

a, 6 chia hết cho n-1

=>n-1 thuộc Ư(6)={1;2;3;6} 

=>n thuộc {2;3;4;7} (vì n thuộc N)

b,14 chia hết cho 2n+3

=>2n+3 thuộc Ư(14)={1;2;7;14} 

=>n thuộc {2} (vì n thuộc N)

c , n+8 chia hết n+1

=>n+1+7 chia hết n+1

=>7 chia hết n+1

=>n+1 thuộc Ư(7)={1;7} 

=>n thuộc {0;6} (vì n thuộc N)

5 tháng 6 2016

a)Đặt \(E_n=n^3+3n^2+5n\)

  • Với n=1 thì E1=9 chia hết 3
  • Giả sử En đúng với \(n=k\ge1\) nghĩa là:

\(E_k=k^3+3k^2+5k\) chia hết 3 (giả thiết quy nạp)

  • Ta phải chứng minh Ek+1 chia hết 3,tức là:

Ek+1=(k+1)3+3(k+1)2+5(k+1) chia hết 3

Thật vậy:

Ek+1=(k+1)3+3(k+1)2+5(k+1)

       =k3+3k2+5k+3k2+9k+9=Ek+3(k2+3k+3)

Theo giả thiết quy nạp thì Ek chia hết 3

ngoài ra 3(k2+3k+3) chia hết 3 nên Ek chia hết 3

=>Ek chia hết 3 với mọi \(n\in N\)*

30 tháng 8 2019

c) n^3-n+12n

= n(n^2-1)+12n

n(n-1)(n+1)+12n

Ta thấy 3 số tự nhiên liên tiếp (n-1)n(n+1) ít nhất có 1 số chia hết cho 2, và ít nhất có 1 số chia hết cho 3, suy ra tích chia hết cho 6 mà 12n =6x2n chia hết cho 6 suy ra điều phải chứng minh

16 tháng 8 2018

\(n^2-5n+3=\left(4-n\right)\left(-n+1\right)-1\)

\(\left(4-1\right)\left(-n+1\right)⋮\left(4-n\right)\Rightarrow-1⋮\left(4-n\right)\)

4-n-11
n53

Vậy ..

3 tháng 12 2016

a, n=1,3,5,7,9

b, n=2,7

c, n=?

d,n=7