Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
3n^3 - 5n^2 + 3n -5 = 3n(n^2+1) - 5(n^2+1) = (n^2+1)(3n-5)
Do biểu thức là số nguyên tố nên n^2 +1 hoặc 3n-5 bằng 1 số còn lại khác 1
TH1 : n^2 + 1 = 1 => n = 0. Thay vào bt có giá trị là -5 ( vô lí do số nguyên tố phải là số > 1 )
TH2 : 3n - 5 = 1 => n = 2 => Thỏa mãn
Vậy bt trên là snt khi và chỉ khi n = 2 và bt bằng 5
có n^1975 + n^1973 +1 = n^2 . n^1973 + n^1973 + 1 =
n.n^1972.(n^2 + 1 ) + 1.
Có n^1972 và n^ 2 đều có số mũ chẵn. nên ước của đa thức trên chỉ còn n + 1 + 1
mà ta cần (n^1975+n^1973+1) là số chính phương hay x + 1 + 1 là số chính phương thỏa mãn x^1972 =x^2 nên suy ra x = 1.
n1975+n1973+1 nguyên tố khi lớn hơn 1
n1975+n1973+1 ko là số nguyên tố khi n khác 1;0
với n=0 thì BT trên bằng 1 ( loại)
với n = 1 thì BT trên bằng 3 ( nhận )
vậy n=1 thì BT trên là số nguyên tố