Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thị Giang - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
(Tất cả những chỗ 111...11; 222..22; 000...00; 999...99 đều có n chữ số)
Đặt \(A=111....11222..22\)
\(\Rightarrow A=111..11.1000...00+2.111....11\)
\(\Rightarrow A=111...11.10^n+2.111...11\)
\(\Rightarrow A=111...11\left(10^n+2\right)\) (1)
Đặt 1111...11 = k => 9k = 999..999 => 9k + 1 = 1000..000 = 10n
Thay vào (1) ta có:
A = k.(9k + 1 + 2) = k.(9k + 3) = 3k.(3k+1)
Mà 3k và 3k + 1 là hai số tự nhiên liên tiếp => đpcm
Bài 1: 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) => đpcm
Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.
Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm
Bài 4 : 1 + 2 + ... + x = 55
Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)
Tổng trên là : (x + 1) . x : 2 = 55
=> (x + 1) . x = 110 = 11 . 10
=> x = 10
Cho mình làm lại nha :
Bài 1: Không. Vì 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn)
Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2. =>
Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm
Bài 4 : 1 + 2 + ... + x = 55
Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)
Tổng trên là : (x + 1) . x : 2 = 55
=> (x + 1) . x = 110 = 11 . 10
=> x = 10
Ta có: 11…122…2=11…100…0+22…2(n chữ số 1, n chữ số 2, n chữ số 0)
=11…1.10…0+11…1.2
=11…1.10n+11…1.2
=11…1.(10n+2)
=(10…0+1).(10n+2)
=(10n+1).(10n+2)
Vì 10n+1 và 10n+2 là 2 số tự nhiên liên tiếp.
=> 11…12…2 là tích của 2 số tự nhiên liên tiếp.
111...122...2 = 111..100..0 + 22...2= 11...1 x 100...0(n số 0) + 111...1 x 2 = 11...1 x 100...2 = 111...1 x (99..9(n số 9) + 3)
=111...1 x (33...3 x 3 +3) = 11...1 x (333...4 x 3) = 33...3(n số 3) x 33...34 là tích của 2 số tự nhiên liên tiếp.
baì1 k=1 có tập số nguên tố . 2;3;5;7;11=5 ptử. với k>1 trong 10 số liên tiếp có 5 số chẵn và 5 số lẻ trong 5 số lẻ ít nhất có hai số chia hết cho 3. vậy với k >1 tập hợp số ntố <5 phân tử. kết luận k=1
Tổng của 5 số nguyên dương liên tiếp có dạng: \(\frac{\left(a+a+4\right)\cdot5}{2}=5\left(a+2\right)⋮5\)
(a và a+4 là số đầu và số cuối khi xếp từ bé đến lớn)
Làm tương tự với tổng của 7 số và 9 số
Suy ra số cần tìm chia hết cho 5,7,9
Mà BCNN(5,7,9)=315 nên số cần tìm là 315