Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\) (1)
\(\dfrac{b}{a+b+c}< \dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\) (1)
\(\dfrac{c}{a+b+c}< \dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\) (3)
Từ (1), (2), (3) \(\Rightarrow\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}\Rightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
Thầy mk hướng dẫn phần a như thế còn phần b mk ko bt lm, chúc p hk tốt
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
a,Ta có \(\left(3^3\right)^n:3^n=9\Leftrightarrow3^{3n}:3^n=3^2\Leftrightarrow3n-n=2\Leftrightarrow n=1\)
b,TA có \(\dfrac{5^2}{5^n}=5^1\Leftrightarrow2-n=1\Leftrightarrow n=1\)
Các câu sau để bn tự làm
a) 27n : 3n = 9
\(\Leftrightarrow\) (27 : 3)n = 9
\(\Leftrightarrow\) 9n = 9
\(\Leftrightarrow\) n = 1
b) \(\dfrac{25}{5^n}=5\)
\(\Leftrightarrow\dfrac{5^2}{5^n}=5\)
\(\Leftrightarrow5^n.5=5^2\)
\(\Leftrightarrow5^{n+1}=5^2\)
\(\Leftrightarrow n+1=2\)
n = 2 - 1
n = 1
c) \(\dfrac{81}{\left(-3\right)^n}=-243\)
\(\Leftrightarrow\dfrac{\left(-3\right)^4}{\left(-3\right)^n}=\left(-3\right)^5\)
\(\Leftrightarrow\left(-3\right)^n.\left(-3\right)^5=\left(-3\right)^4\)
\(\Leftrightarrow\left(-3\right)^{n+5}=\left(-3\right)^4\)
\(\Leftrightarrow n+5=4\)
n = 4 - 5
n = -1
Ta có :
+) \(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\) \(\left(1\right)\)
+) \(c^2=b.d\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{d}\)\(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Đặt :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}=k^3\)
Mặt khác :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=k^3\)
Áp dụng tính chất dãy tỉ lệ thức ta có :
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)
\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\rightarrowđpcm\)
6.(\(\dfrac{-2}{3}\))+12.\(\dfrac{-2^2}{3}\)+18.\(\dfrac{-2^3}{3}\)
= -4+(-16)+(-48)
=-68
c, \(\left(7-3x\right)\left(2x+1\right)=0\)
=> \(7-3x=0\) hoặc \(2x+1=0\)
\(3x=7-0\) hoặc \(2x=0-1\)
\(3x=7\) hoặc \(2x=-1\)
\(x=7:3\) hoặc \(x=-1:2\)
\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)
Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)
a) \(\dfrac{1}{9}.27^n=3^n\)
\(\dfrac{1}{3^2}.3^{3n}=3^n\\ \Rightarrow3^{3n-2}=3^n\\ \Rightarrow3n-2=n\\ \Rightarrow n=1\)
b) \(3^{-2}.3^4.3^n=3^7\)
\(\dfrac{1}{3^2}.3^4.3^n=3^7\\ \Rightarrow3^{n+2}=3^7\Rightarrow n+2=7\\ \Rightarrow n=5\)
c) \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\dfrac{1}{2}.2^n+4.2^n=9.2^5\\ \Rightarrow2^n\left(\dfrac{1}{2}+4\right)=9.2^5\\ \Rightarrow2^{n-1}.9=9.2^5\\ \Rightarrow n-1=5\\ \Rightarrow n=6\)
d) \(32^{-n}.16^{-n}=2048\)
\(\dfrac{1}{2^n.16^n}.16^n=2^{11}=\dfrac{1}{2^n}=2^{11}\\ \Rightarrow2^n.2^{11}=1\\ \Rightarrow2^{n+11}=2^0\\ \Rightarrow n+11=0\\ \Rightarrow n=-11\)
Chúc bạn học tốt
cảm ơn bạn nhá! tặng bn nè