Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 3/n+1EZ.
=>3 chia hết cho n+1.
Mà nEZ=>n+1EZ.
=>n+1E{-1;-3;1;3}
=>nE{0;-2;2;4}
=>3chia het n+1
=>n+1 thuộc Ư(3)={1;-1;3;-3}
Lap bang gia tri
n+1 | 1 | 3 | -1 | -3 |
n | 0 | 2 | -2 | -4 |
Vay n Thuoc 0;2;-2;-4
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)
=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)
=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)
Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)
=>16A<1
Do đó: A<1/16(đpcm)
Để phân số n+5/n+2 là số nguyên
=> n + 5 chia hết cho n + 2
=> (n+2)+3 chia hết cho n+2
Ta có: n+2 chia hết cho n+2
Để (n+2)+3 chia hết cho n+2
=> 3 chia hết cho n+2
=> n+2 thuộc vào tập hợp các ước của 3 mà ước của 3 = {1;-1;3;-3}
Thay:
n+2 | 1 | -1 | 3 | -3 |
n | -1 | -3 | 1 | -5 |
Vậy n thuộc vào tập hợp 4 giá trị {-1;-3;1;-5}
Mình không biết nữa nhưng mình nghĩ là 1 vì:
\(\frac{1+5}{1+2}\)=\(\frac{6}{3}\)=2
ffwdggfw