K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

2n là bội của n - 1

2n - 2 + 2 là bội của n - 1

2 là bội của n - 1

n - 1 thuộc U(2) = {-2 ; -1 ; 1 ; 2 }

n - 1=  -2 => n = -1

n - 1 = -1 => n = 0

n - 1 = 1 => n = 2

n - 1 = 2 => n = 3

Do  n là số tự nhiên

=> n thuộc {0;2;3}

2 tháng 1 2016

2n/n-1

2(n-1)+2/n-1

=> 2:n-1

N-1={3;2}

2n + 3 là bội của n - 2

2n +3 chia hết cho n-2

2n - 4 + 7 chia hết cho n - 2

n - 2 thuộc Ư(7)

=> n  = 3;1; - 5 ; 9

mà n là số tự nhiên => n = 1;3;9

9 tháng 1 2017

bạn Nguyễn Thị Bích Phương làm đúng  đó

9 tháng 1 2017

n là 0,4

9 tháng 1 2017

em lớp 5 nhưng biết câu này . Đáp án là 4

vì ( 2n + 7 ) chia hết cho ( n + 1 ) = > 2n + 7 -2 (n +1 )  chia hết cho n + 1 

=> 5 chia hết cho  n + 1

=> n + 1 là ước của  5 

với n + 1 = 1 => n = 0

với n + 1 = 5 => n = 4

đáp số : n = 0 ; n = 4

31 tháng 12 2020

Ta có :

3n+5 là bội của 2n-1

\(\Rightarrow\)3n+5\(⋮\)2n+1

\(\Rightarrow\)2(3n+5)\(⋮\)2n+1

\(\Rightarrow\)6n+10\(⋮\)2n+1

\(\Rightarrow\)6n+3-13\(⋮\)2n+1

\(\Rightarrow\)3(2n+1)-13\(⋮\)2n+1

Vì 3(2n+1)\(⋮\)2n+1

\(\Rightarrow\)13\(⋮\)2n+1

\(\Rightarrow\)2n+1\(\in\)Ư(13)

            2n-1                    n            
              1          -1
             -1          0
              13         7
            -13          -6

Vậy n\(\in\){1; 0; 7; -6)

8 tháng 11 2021

You what

9 tháng 11 2018

a) 6 là bội của n+1

=> 6 ⋮ n+1

=> n+1 thuộc Ư(6)={1;2;3;-1;-2;-3}

Lập bảng tìm n :

n+1123-1-2-3
n012-2-3-4

Vậy n thuộc { 0;1;2;-2;-3;-4}

b) Xét n+1 là bội của 6

=> n+1 thuộc { 0; 6; 12; 18; ... }

=> n thuộc { -1; 5; 11; 17; .... }

Nhớ xét các t/h âm nữa nhé! Nhưng vì bội vô hạn nên chỉ cần thêm 1 - 2 số âm thôi nha ^^

c) 2n+3 là bội của n+1

=> 2n+3 ⋮ n+1

=> 2(n+1) + 1 ⋮ n+1

ta có 2(n+1) ⋮ n+1

=> 1 ⋮ n+1

=> n+1 thuộc Ư(1) = { 1; -1 }

=> n thuộc { 0; -2 }

d) tương tự 

9 tháng 11 2018

a) 6 là bội của n+1 => n+1 là ước của 6

Ư(6)= 1;2;3;6.   Ta có bảng:               ( bạn tự vẽ bảng nhé )

n+1            1                2               3                6

n                0               1                2               5

Vậy n = 0; 1; 2; 5

b) B(6)= 0;6;12;18;24;30;......       Ta có bảng:

n+1            0                12                 18                 24                  30

n               0                 11                 17                 23                  29

Vậy n = 0;5;11;17;23;29;.....

c) ta có bảng:

 n                  0                 1              2                 3                 4                 5                6                   7

2n+3              3                 5              7                 9                11                13              15                 17

n+1               1                  2             3                  4                5                  6                7                    8

Vậy n = 0.

27 tháng 4 2017

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)

Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24n⋮24.

7 tháng 4 2019

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24n⋮24.

22 tháng 11 2016

Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ

\(\Rightarrow2n+1=1\left(mod8\right)\)

=> n \(⋮\) 4

=> n chẵn

=> n+1 cũng là số lẻ

\(\Rightarrow n+1=1\left(mod8\right)\)

=> n \(⋮\) 8

Mặt khác :

\(3n+2=2\left(mod3\right)\)

\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)

Mà n+1 và 2n+1 là các số chính phương lẻ

\(\Rightarrow n+1=2n+1=1\left(mod3\right)\)

=> n chia hết cho 3

Mà ( 3 ; 8 ) = 1

=> n chia hết cho 24

22 tháng 11 2016

Vì n + 1 và 2n + 1 đêu là phân số chính phương nên đặt n+1 = k\(^2\), 2n+1 = m\(^2\)( k, m \(\in\) N)

Ta có m là số lẻ => m = 2a+1 =>m\(^2\)= 4a(a+1)+1

=>n=\(\frac{m^2-1}{2}\)=\(\frac{4a\left(a+1\right)}{2}\)=2a(a+1)

=> n chẵn =>n+1 là số lẻ =>k lẻ =>Đặt k = 2b+1 (Với b \(\in\) N) =>k\(^2\)=4b(b+1)+1

=> n=4b(b+1) =>n \(⋮\)8 (1)

Ta có k\(^2\) + m\(^2\) =3n+2=2 ( mod3)

Mặt khác k\(^2\) chia 3 dư 0 hoặc 1 ,m\(^2\)chia 3 dư 0 hoặc 1

Nên để k\(^2\)+m\(^2\) =2 (mod3) thì k\(^2\) = 1(mod3)

m\(^2\) = 1 (mod3)

=>m\(^2\)-k\(^2\)\(⋮\)3 hay (2n+1)-(n+1) \(⋮\)3 =>n \(⋮\) 3

Mà (8;3)=1

Từ (1) ; (2) và (3) => n \(⋮\) 24