K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

a) \(\frac{-32}{\left(-2\right)^n}=4\)

\(\frac{\left(-2\right)^5}{\left(-2\right)^n}=4\)

\(\left(-2\right)^{5-n}=\left(-2\right)^2\)

=> 5-n = 2

n = 3

b) \(\frac{8}{2^n}=2\)

\(\frac{2^3}{2^n}=2\)

\(2^{3-n}=2^1\)

=> 3 -n = 1

n = 2

c) \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\)

\(\left(\frac{1}{2}\right)^{2n-1}=\left(\frac{1}{2}\right)^3\)

=> 2n -1 = 3

2n = 4

n = 2

27 tháng 7 2018

a) \(\frac{-32}{\left(-2\right)^n}=4\Leftrightarrow\left(-2\right)^n=\frac{-32}{4}\)

\(\left(-2\right)^n=-8\)Mà \(-8=2^{-3}\)

\(\Rightarrow x=-3\)

b) \(\frac{8}{2^n}=2\Leftrightarrow2^n=\frac{8}{2}\)

\(2^n=4\)  Mà \(4=2^2\Rightarrow x=2\)

c) \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\Rightarrow\left(\frac{1}{2}\right)^{2n}:\frac{1}{2}=\frac{1}{8}\)

\(\left(\frac{1}{2}\right)^{2n}=\frac{1}{8}\cdot\frac{1}{2}\)

\(\left(\frac{1}{2}\right)^{2n}=\frac{1}{16}\Leftrightarrow\frac{1}{2^{2n}}=\frac{1}{16}\)   mà\(16=2^4\)

\(2n=4\Rightarrow n=2\)

Vậy .........................

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

4 tháng 9 2016

a) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)

\(\Rightarrow\left(\frac{1}{3}\right)^n=\frac{1^4}{3^4}\)

\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)

\(\Rightarrow n=4\)

Vậy n = 4

b) \(\frac{-512}{343}=\left(\frac{-8}{7}\right)^n\)

\(\Rightarrow\frac{-8^3}{7^3}=\left(\frac{-8}{7}\right)^n\)

\(\Rightarrow\left(\frac{-8}{7}\right)^3=\left(\frac{-8}{7}\right)^n\)

\(\Rightarrow n=3\)

Vậy n = 3

 

 

15 tháng 9 2015

1.a.\(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2=\frac{17}{12}.\left(\frac{1}{20}\right)^2=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)

b. \(2\div\left(\frac{1}{2}-\frac{2}{3}\right)^3=2\div\left(-\frac{1}{6}\right)^3=2\div\left(-\frac{1}{216}\right)=2.\left(-216\right)=-432\)

2.a.\(\frac{16}{2^n}=2\Rightarrow2^n=16:2=8=2^3\Rightarrow n=3\)

b.\(\frac{\left(-3\right)^n}{81}=-27\Rightarrow\left(-3\right)^n=-27.81=-2187=\left(-3\right)^7\Rightarrow n=7\)

c. \(8^n:2^n=4\Rightarrow\left(8:2\right)^n=4\Rightarrow4^n=4^1\Rightarrow n=1\)

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)

26 tháng 2 2018

Ta có : 

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)

\(A< \frac{1}{4}-\frac{1}{4n}\)

Lại có \(n>0\) nên \(\frac{1}{4n}>0\)

\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)