K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

\(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2003}{2004}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)\(\Rightarrow\frac{1}{n+1}=\frac{1}{4008}\)\(n+1=4008\Rightarrow n=4007\)

 

 

11 tháng 12 2016

cảm ơn

đặt a=1/3+1/6+1/10+...........+2/n(n+1)

1/2a=1/6+1/12+...........+1/n(n+1)

1/2a=1/2.3+1/3.4+........+1/n(n+1)

1/2a=1/2-1/3+1/3-1/4+.......+1/n-1/n+1

1/2a=1/2-1/n+1

a=(1/2--1/n+1):1/2=2003/2004

1/2-1/n+1=2003/2004.1/2

1/2-1/n+1=2003/4008

1/n+1=1/2-2003/4008

1/n+1=1/4008

suy ra n+1=4008

n=4007

17 tháng 3 2017

n=4007 do

8 tháng 1 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{n\left(n+1\right)}=1-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+...+\frac{2}{n}-\frac{2}{n+1}\)

Tới đây dễ rồi bạn rút gọn rồi tìm n

24 tháng 3 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{n\left(n+2\right)}< \frac{2003}{2004}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{n}+\frac{1}{n+2}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{n+2}\right)\)

\(=\frac{1}{2}\left(\frac{n+2}{n+2}-\frac{1}{n+2}\right)\)

\(=\frac{1}{2}.\frac{n+1}{n+2}\)

\(=\frac{n+1}{2\left(n+2\right)}< \frac{2003}{2004}\)

\(\Leftrightarrow\hept{\begin{cases}n+1< 2003\\2\left(n+2\right)< 2004\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n< 2002\\\left(n+2\right)< 1002\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n< 2002\\n< 1000\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n+1=2002\\2\left(n+2\right)=1000\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n=2001\\n=498\end{cases}}\)

2 tháng 4 2016

n=2015 . bạn nhân 2 vào lần lượt các p/s rồi đưa 2 ra ngoài 

2 tháng 4 2016

hoi kho day bn a hihihihihiiiiiiiiiiiiiiiiiiiiiiiiiii

20 tháng 8 2016

1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x + 1) = 4007/2004

2/2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x + 1) = 4007/2004

2 × (1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/x(x + 1)) = 4007/2004

1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x + 1 = 4007/2004 : 2

1 - 1/x + 1 = 4007/2004 × 1/2

x/x + 1 = 4007/4008

=> x = 4007

DD
15 tháng 2 2022

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{n\left(n+1\right)}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2010}{2011}\)

\(\Leftrightarrow n=4021\).