K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2015

Bài 1: 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) => đpcm

Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.

Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm

Bài 4 : 1 + 2 + ... + x = 55

Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)

Tổng trên là : (x + 1) . x : 2 = 55

=> (x + 1) . x = 110 = 11 . 10

=> x = 10

9 tháng 6 2015

Cho mình làm lại nha :

Bài 1: Không. Vì 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) 

Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2. =>

Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm

Bài 4 : 1 + 2 + ... + x = 55

Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)

Tổng trên là : (x + 1) . x : 2 = 55

=> (x + 1) . x = 110 = 11 . 10

=> x = 10

5 tháng 6 2016

a)Đặt \(E_n=n^3+3n^2+5n\)

  • Với n=1 thì E1=9 chia hết 3
  • Giả sử En đúng với \(n=k\ge1\) nghĩa là:

\(E_k=k^3+3k^2+5k\) chia hết 3 (giả thiết quy nạp)

  • Ta phải chứng minh Ek+1 chia hết 3,tức là:

Ek+1=(k+1)3+3(k+1)2+5(k+1) chia hết 3

Thật vậy:

Ek+1=(k+1)3+3(k+1)2+5(k+1)

       =k3+3k2+5k+3k2+9k+9=Ek+3(k2+3k+3)

Theo giả thiết quy nạp thì Ek chia hết 3

ngoài ra 3(k2+3k+3) chia hết 3 nên Ek chia hết 3

=>Ek chia hết 3 với mọi \(n\in N\)*

30 tháng 8 2019

c) n^3-n+12n

= n(n^2-1)+12n

n(n-1)(n+1)+12n

Ta thấy 3 số tự nhiên liên tiếp (n-1)n(n+1) ít nhất có 1 số chia hết cho 2, và ít nhất có 1 số chia hết cho 3, suy ra tích chia hết cho 6 mà 12n =6x2n chia hết cho 6 suy ra điều phải chứng minh

5 tháng 7 2015

A = n4 + 6n3 + 11n2 + 6n
= n(n3 + 6n2 + 11n + 6)
= n(n3 + n2 + 5n2 + 5n + 6n + 6)
= n[n2(n + 1) + 5n(n + 1) + 6(n + 1)]
= n(n + 1)(n2 + 5n + 6)
= n(n + 1)(n + 2)(n + 3) 
A = n(n + 1)(n + 2)(n + 3)
Trong đó là tích 4 số tự nhiên liên tiếp có một số chia hết cho 3 (1)
4 tự nhiên liên tiếp có hai số chẵn liên tiếp, trong 2 số chẵn liên tiếp có một số chia hết cho 2 và một số chia hết cho 4. Nên tích 4 tự nhiên liên tiếp chia hết cho 8 (2)
3 và 8 là hai số nguyên tố cùng nhau (3)
Từ (1), (2), (3) => n+6n3+11n2+6n chia hết cho tích (3 . 8) = 24 (đpcm)

15 tháng 8 2018

Em tham khảo tại đây nhé:

Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath

12 tháng 12 2016

đây là toán lớp mấy vậy

12 tháng 12 2016

Muốn vip à 

5 tháng 6 2016

3)

a)\(\frac{4n+5}{n}=4+\frac{5}{n}\)nguyen nen n\(\in\)U(5)=\(\left\{1,5\right\}\)vi n thuoc N

b)\(\frac{n+5}{n+1}=1+\frac{4}{n+1}\)nguyen nen (n+1)\(\in U\left(4\right)=\left\{1,2,4\right\}\)vi n+1>-1

=> n\(\in\left\{0,1,3\right\}\)

5 tháng 6 2016

Bài 1:

a)[(2x-13):7].4 = 12

Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau

\(\Leftrightarrow\frac{8x-52}{7}=\frac{12}{1}\Rightarrow\left(8x-52\right)1=7.12\)

Chia cả hai vế cho 4 ta đc:

\(\frac{8x-52}{4}=\frac{7.12}{4}\)

\(\Leftrightarrow2x-13=21\)

\(\Leftrightarrow2x=34\)

\(\Leftrightarrow x=17\)

b.1270:[115 - (x-3)] = 254

\(\Leftrightarrow\frac{1270}{118-x}=254\)

\(\Leftrightarrow-\frac{254\left(x-113\right)}{x-118}=0\)

\(\Leftrightarrow-254\left(x-113\right)=0\)

\(\Leftrightarrow x-113=0\)

\(\Leftrightarrow x=113\)

Bài 2:(mk ngu toán CM)

Bài 3:

a)\(\frac{4n+5}{n}=\frac{4n}{n}+\frac{5}{n}=4+\frac{5}{n}\in Z\)

=>5 chia hết n

=>n thuộc Ư(5)

=>n thuộc {1;5) Vì n thuộc N

b)(n+5) chia hết cho (n+1)

=>n+1+4 chia hết n+1

=>4 chia hết n+1

=>n+1 thuộc Ư(4)

=>n+1 thuộc {1;2;4} Vì n thuộc N

=>n thuộc {0;1;3}

11 tháng 12 2016

Bài này giải được 1 tháng VIP đấy, vì đây là câu hỏi của Toán vui hằng tuần