K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

n+3\(⋮\)n+1

=> n+1+2\(⋮\)n+1

=> 2\(⋮\)n+1

=> n+1 \(\in\)1,2,-1,-2

=> n \(\in\)-2,1-3,-4

21 tháng 10 2018

cám ơn , kb nha 

29 tháng 11 2017

8n + 193 chia hết 4n + 3

=> 8n + 6 + 187 chia hết 4n + 3

=> 2( 4n + 3 ) + 187 chia hết 4n + 3

=> 187 chia hết cho 4n+ 3

=> 4n thuộc Ư( 187 ) và n thuộc N

Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }

4n + 3 = 1 ( loại )

4n + 3 = 11 => n=2

4n + 3 = 17 ( loại )

4n + 3 = 187 => n = 46

vậy n= 2 hoặc 46

8n + 193 chia hết 4n + 3

=> 8n + 6 + 187 chia hết 4n + 3

=> 2( 4n + 3 ) + 187 chia hết 4n + 3

=> 187 chia hết cho 4n+ 3

=> 4n thuộc Ư( 187 ) và n thuộc N

Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }

4n + 3 = 1 ( loại )

4n + 3 = 11 => n=2

4n + 3 = 17 ( loại )

4n + 3 = 187 => n = 46

vậy n= 2 hoặc 46

6 tháng 5 2018

\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)

\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)

\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)

6 tháng 5 2018

10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n

=9.(111....1(n chữ số 1)+2n)

xét --------------------------------=11...1-n+3n

dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n

=>11....1-n chia hết cho 3

=>11.....1-n+3 chia hết cho 3

=>10n+18n-1 chia hết cho 27

2 tháng 3 2017

n + 5 chia hết cho n+1

(n+1)+4 chia hết cho n+1

Vì n+1 chia hết cho n+1

Nên 4 chia hết cho n+1

Suy ra, n+1 thuộc 1; 2; 4

Rồi sau đó, bạn tìm ra n nha.

Chúc bạn học tốt

2 tháng 3 2017

n=0 .kết bạn đi

28 tháng 12 2018

1) Có: \(2n+7=2(n+1)+5\)

Mà \(2\left(n+1\right)⋮n+1\)

\(\Rightarrow5⋮n+1\Rightarrow n+1\inƯ\left(5\right)\left\{1;5\right\}\)

\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)

Vậy \(n\in\left\{0;4\right\}\) thoả mãn

2) Có: \(n+6=\left(n+2\right)+4\)

Mà \(n+2⋮n+2\Rightarrow4⋮n+2\Rightarrow n+2\inƯ\left\{4\right\}=\left\{1;2;4\right\}\)

\(\Rightarrow+n+2=4\Rightarrow n=2\)

       \(+n+2=2\Rightarrow n=0\)

       \(+n+2=1\Rightarrow n=-1\)

Vì \(n\inℕ\Rightarrow n\in\left\{2;0\right\}\)

_Thi tốt_

29 tháng 12 2018

có 2n+1 chia hết cho n+1

=> n+n+1 chia hết cho n+1

=>n+1+n+1-1 chia hết cho n+1

=>2.[n+1] chia hết cho n+1

mà 2.[n+1] chia hết cho n+1

=> -1 chia hết cho n+1

=>n+1 thuộc Ư[-1]

=>n+1 thuộc {1 và -1}

=>n thuộc {0 và -2}

Vậy n thuộc {0 va -2}
 

25 tháng 9 2018

( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... ( x + 100 ) = 5750

Số số hạng = số x trong dãy là : ( 100 - 1 ) : 1 + 1 = 100 số

Tổng là : ( 100 + 1 ) x 100 : 2 = 5050

100x = 5750 - 5050

100x = 700

x = 700 : 100

x = 7

2 tháng 1 2019

Ta có : 2n - 5 = 2(n + 1) - 7

Do n + 1\(⋮\)n + 1 => 2(n + 1) \(⋮\)n + 1

Để 2n - 5 \(⋮\)n + 1 thì 7 \(⋮\)n + 1 => n + 1\(\in\)Ư(7) = {1; 7; -1; -7}

Lập bảng : 

n + 117-1-7
 n06-2-8

Vậy n \(\in\){0; 6; -2; -8} thì 2n - 5 \(⋮\)n + 1

12 tháng 7 2017

xét n(n+1)(4n+1)

Có (nn+n1)(4n+1)

(2n+n)(4n+1)=3n(4n+1)

Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3

xét3n(4n+1)

có 3n*4n+3n

=>n(3+3)4n

=>n6*4n=24n chia hết cho 2

12 tháng 7 2017

mình làm ko biết đúng không 

nhung chac la se dung

27 tháng 12 2018

nhanh lên nha mk mai thi r

27 tháng 12 2018

mik chỉ giúp câu 2 đc thôi cong câu 1 thì mik có bài tương tự

 1.

tìm số nguyên a để 2n+3 chia hết cho n-2

bài giải

ta có 2n=3 chia hết cho n-2

suy ra 2(n-2) + 7 chia hết cho n-2

suy ra n-2 thuộc Ư(7)={1:7}

ta có bảng giá trị

n-217
n39
đối chiếuthỏa mãnthỏa mãn

vậy suy ra n=3 hoặc n =9

2. giải

từ 1 đến 9 có số  chữ số là

(9-1):1+1x1= 9(c/s)   [nhân 1 vì mỗi số có 1 c/s]

từ 10 dến 99 có scs ( số chữ số) là

(99-10):1+1x2=180(scs)

từ  100 đến 350 có scs là

(350-100):1+1x3=253(scs)

cần sủa dụng scs để đánh  số các trang sách là

9+180+253=442 (scs)

vậy cần 442 scs để dánh dấu các trang sách

2 tháng 1 2019

5, 

Ta có :n2 + n + 6 = n(n + 1 ) + 6

Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp

=> n(n+1) không có c/s tận cùng là 9 và 4

=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )

Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N

2 tháng 1 2019

6, 

Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12

Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3

Số có tận cùng là 387 thì chia cho 8 sẽ dư 3

=> các số có tận cùng là 387