Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8n + 193 chia hết 4n + 3
=> 8n + 6 + 187 chia hết 4n + 3
=> 2( 4n + 3 ) + 187 chia hết 4n + 3
=> 187 chia hết cho 4n+ 3
=> 4n thuộc Ư( 187 ) và n thuộc N
Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }
4n + 3 = 1 ( loại )
4n + 3 = 11 => n=2
4n + 3 = 17 ( loại )
4n + 3 = 187 => n = 46
vậy n= 2 hoặc 46
8n + 193 chia hết 4n + 3
=> 8n + 6 + 187 chia hết 4n + 3
=> 2( 4n + 3 ) + 187 chia hết 4n + 3
=> 187 chia hết cho 4n+ 3
=> 4n thuộc Ư( 187 ) và n thuộc N
Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }
4n + 3 = 1 ( loại )
4n + 3 = 11 => n=2
4n + 3 = 17 ( loại )
4n + 3 = 187 => n = 46
vậy n= 2 hoặc 46
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
n + 5 chia hết cho n+1
(n+1)+4 chia hết cho n+1
Vì n+1 chia hết cho n+1
Nên 4 chia hết cho n+1
Suy ra, n+1 thuộc 1; 2; 4
Rồi sau đó, bạn tìm ra n nha.
Chúc bạn học tốt
1) Có: \(2n+7=2(n+1)+5\)
Mà \(2\left(n+1\right)⋮n+1\)
\(\Rightarrow5⋮n+1\Rightarrow n+1\inƯ\left(5\right)\left\{1;5\right\}\)
\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)
Vậy \(n\in\left\{0;4\right\}\) thoả mãn
2) Có: \(n+6=\left(n+2\right)+4\)
Mà \(n+2⋮n+2\Rightarrow4⋮n+2\Rightarrow n+2\inƯ\left\{4\right\}=\left\{1;2;4\right\}\)
\(\Rightarrow+n+2=4\Rightarrow n=2\)
\(+n+2=2\Rightarrow n=0\)
\(+n+2=1\Rightarrow n=-1\)
Vì \(n\inℕ\Rightarrow n\in\left\{2;0\right\}\)
_Thi tốt_
có 2n+1 chia hết cho n+1
=> n+n+1 chia hết cho n+1
=>n+1+n+1-1 chia hết cho n+1
=>2.[n+1] chia hết cho n+1
mà 2.[n+1] chia hết cho n+1
=> -1 chia hết cho n+1
=>n+1 thuộc Ư[-1]
=>n+1 thuộc {1 và -1}
=>n thuộc {0 và -2}
Vậy n thuộc {0 va -2}
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... ( x + 100 ) = 5750
Số số hạng = số x trong dãy là : ( 100 - 1 ) : 1 + 1 = 100 số
Tổng là : ( 100 + 1 ) x 100 : 2 = 5050
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
Ta có : 2n - 5 = 2(n + 1) - 7
Do n + 1\(⋮\)n + 1 => 2(n + 1) \(⋮\)n + 1
Để 2n - 5 \(⋮\)n + 1 thì 7 \(⋮\)n + 1 => n + 1\(\in\)Ư(7) = {1; 7; -1; -7}
Lập bảng :
n + 1 | 1 | 7 | -1 | -7 |
n | 0 | 6 | -2 | -8 |
Vậy n \(\in\){0; 6; -2; -8} thì 2n - 5 \(⋮\)n + 1
xét n(n+1)(4n+1)
Có (nn+n1)(4n+1)
(2n+n)(4n+1)=3n(4n+1)
Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3
xét3n(4n+1)
có 3n*4n+3n
=>n(3+3)4n
=>n6*4n=24n chia hết cho 2
mik chỉ giúp câu 2 đc thôi cong câu 1 thì mik có bài tương tự
1.
tìm số nguyên a để 2n+3 chia hết cho n-2
bài giải
ta có 2n=3 chia hết cho n-2
suy ra 2(n-2) + 7 chia hết cho n-2
suy ra n-2 thuộc Ư(7)={1:7}
ta có bảng giá trị
n-2 | 1 | 7 |
n | 3 | 9 |
đối chiếu | thỏa mãn | thỏa mãn |
vậy suy ra n=3 hoặc n =9
2. giải
từ 1 đến 9 có số chữ số là
(9-1):1+1x1= 9(c/s) [nhân 1 vì mỗi số có 1 c/s]
từ 10 dến 99 có scs ( số chữ số) là
(99-10):1+1x2=180(scs)
từ 100 đến 350 có scs là
(350-100):1+1x3=253(scs)
cần sủa dụng scs để đánh số các trang sách là
9+180+253=442 (scs)
vậy cần 442 scs để dánh dấu các trang sách
5,
Ta có :n2 + n + 6 = n(n + 1 ) + 6
Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp
=> n(n+1) không có c/s tận cùng là 9 và 4
=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )
Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N
6,
Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12
Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3
Số có tận cùng là 387 thì chia cho 8 sẽ dư 3
=> các số có tận cùng là 387
n+3\(⋮\)n+1
=> n+1+2\(⋮\)n+1
=> 2\(⋮\)n+1
=> n+1 \(\in\)1,2,-1,-2
=> n \(\in\)-2,1-3,-4
cám ơn , kb nha