Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc là số phải tìm abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp: (1)
Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2 Vậy a = 2, b = 5, c = 0
Số phải tìm là 250 (2)
Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là: 250, 125, 375
Lời giải:
Gọi số cần tìm là $\overline{abcd}$ với $a,b,c,d$ là số tự nhiên với $a\neq 0$ và $0\leq a,b,c,d\leq 9$
Theo bài ra ta có:
$\overline{abcd}+\overline{ab}=4618$
$\overline{ab}\times 100+\overline{cd}+\overline{ab}=4618$
$\overline{ab}\times 101+\overline{cd}=4618$
$\overline{ab}\times 101=4618-\overline{cd}> 4618-99$
$\overline{ab}\times 101> 4519$
$\overline{ab}> 44,74$
$\Rightarrow a\geq 4$
Mặt khác, nếu $a\geq 5$ thì $\overline{abcd}\geq 5000$. Khi đó tổng của số ban đầu và số cũ không thể là $4618$
Vậy $a=4$
Ta có:
$\overline{4b}\times 101+\overline{cd}=4618$
$(40+b)\times 101+\overline{cd}=4618$
$40\times 101+b\times 101+\overline{cd}=4618$
$b\times 101+\overline{cd}=578$
$b\times 101=578-\overline{cd}< 578$
$\Rightarrow b< 5,72$
$b\times 101=578-\overline{cd}> 578-99=479$
$\Rightarrow b> 4,74
Do đó $b=5$
$\overline{cd}=578-b\times 101=578-5\times 101=73$
Vậy số cần tìm là $4573$
Theo đề ra ta có:
abc = 9 x bc + 16 (a + b + c không chia hết cho 9, bc khác 0)
100 x a + 10 x b + c = 9 x (10 x b +c) + 16
100 x a + 10 x b + c = 90 x b + 9 x c + 16
100 x a = 90 x b - 10 x b + 9 x c - c + 16
100 x a = 80 x b + 8 x c + 16
25 x a = 20 x b + 2 x c + 4 (Chia cả 2 vế cho 4)
Vì vế sau chia hết cho 2, nên 25 x a phải là tích chẵn.
Từ đây ta thử đoán a = 2, 4, 6, 8, kết hợp thử vế sau
và cuối cùng ra đáp số là : 223; 448, 673, 898.
Đáp số: 223;448;673;898
Lời giải:
Gọi số cần tìm là $\overline{ab1}$ với $a,b$ là số tự nhiên có 1 chữ số. $a>0$.
Theo bài ra ta có:
$\overline{ab}=3\times \overline{b1}$
$10\times a+b=3\times (b\times 10+1)=30\times b+3$
$30\times b-10\times a=b-3$
Vì $30\times b-10\times a$ có tận cùng bằng $0$ nên $b-3$ có tận cùng bằng $0$,
$\Rightarrow b$ có tận cùng là $3$.
$\Rightarrow b=3$.
Vậy: $30\times 3-10\times a=0$
$90-10\times a=0$
$a=90:10=9$
Vậy số cần tìm là $931$
GIải
Gọi số đó là ab2; số sau khi xóa chữ số 2 là ab; số sau khi xóa chữ số a là b2.
Theo đề ta có: ab : b2 = 2. Vì b : 2 = 2 nên b = 4.
Thay b = 4 vào ab : b2 = 2 được a4 : 42 = 2, vì a : 4 = 2 nên a = 8.
Thay a = 8 và b = 4 ta được số 842.
Đáp số: 842