K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2017

giá trị nhỏ nhất của biểu thức là:

\(\left\{\begin{matrix}-1\\4\end{matrix}\right.\)

14 tháng 2 2017

nhưng mà có đk là 0<x<1/2 thì làm sao x=-1; x=4 đc v bn??

21 tháng 6 2020

1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)

Dấu "=" xảy ra <=> a = 4 

Vậy min A = 17/4 tại a = 4

2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)

Dấu "=" xảy ra <=> x = 2

Vậy min B = 8 tại x = 2

3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)

Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)

Dấu "=" xảy ra <=> x = 1/2  thỏa mãn

Vậy min C = 7 đạt tại x = 1/2

21 tháng 6 2020

https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này

10 tháng 7 2020

Áp dụng BĐT Cauchy cho 2 số không âm ta có : 

\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)

Đẳng thức xảy ra khi và chỉ khi \(a=4\)

Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)

17 tháng 12 2017

a. tìm điều kiện xác định của P

ĐKXĐ: \(x\ne0;x\ne\pm1\)

\(P=\left(\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{2\left(x+1\right)}\right):\frac{x+1}{2x}\)

\(P=\frac{4x+\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\times\frac{2x}{x+1}\)

\(P=\frac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}\times\frac{2x}{x+1}\)

\(P=\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\times\frac{x}{x+1}\)

\(P=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\times\frac{x}{x+1}\)

\(P=\frac{x}{x-1}\)

b. tìm x 

Với P = 2 ta có:

\(\frac{x}{x-1}=2\)

=>  x = 2(x-1)

=> x = 2x -2

=> 2x - x = 2

=> x = 2

Vậy với x = 2 thì P = 2

c. với 0 < x < 1 . hãy so sánh P với |P|

\(P=\frac{x}{x-1}\)

Với 0< x < 1 thì x -1 <0 ; x>0 => P <0 

Suy ra P< |P| ( vì |P| >0)

 
Câu hỏi tương tự Đọc thêm Báo cáo
Toán lớp 8
17 tháng 12 2017

A. DE P XAC DINH

<=>X^2-1 KHÁC 0<=>X KHAC -1 VÀ X KHÁC 1

<=>2X+2 KHAC 0 <=>X KHAC-1

<=>2X KHAC 0 <=>X KHAC 0

=> X KHAC O HOAC X KHAC +-1

TACO:( 2X / X^2-1 +X-1/ 2X+2 ) : X+1 / 2X

=[2X . 2 / (X+1)(X-1). 2  + (X-1)(X-1) / 2(X+1)(X-1) ] : X+1/2X

=[4X+(X-1)^2]  /  2(X+1)(X-1)  :X+1 / 2X

=(4X+X^2-2X+1) / 2(X+1)(X-1)  : X+1/2X

=X^2+2X+1 / 2(X-1)(X+1) : X+1 / 2X

=(X+1)^2 / 2(X-1)(X+1) : X+1/2X

=(X+1) / 2(X-1) . 2X/X+1

=X/X-1

B. DE P=2

<=>X/X-1=2

<=>X=2(X-1)=2X-2=X+X-2

TA CÓ: X +X-2 = X+0

=>X-2=0

=>X=2

C .VI 0<X<1

=>X / X-1 = |X/X-1|

=>P=|P|

3 tháng 3 2020

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)

\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)

\(\Leftrightarrow4x+4x>-1\)

\(\Leftrightarrow8x>-1\)

\(\Leftrightarrow x>-\frac{1}{8}\)

\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)

\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-6x^2< 1+3\)

\(\Leftrightarrow-2x^2< 4\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow x>\pm\sqrt{2}\)