K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2020

\(y=\left(3-sinx\right)\left(1-sinx\right)\ge0\)

\(y_{min}=0\) khi \(sinx=-1\)

\(y=sin^2x-4sinx-5+8=\left(sinx+1\right)\left(sinx-5\right)+8\le8\)

\(y_{max}=8\) khi \(sinx=-1\)

NV
18 tháng 9 2020

\(y=\frac{2cos^2x+2sinx.cosx}{2+2sin^2x}=\frac{1+cos2x+sin2x}{3-cos2x}\)

\(\Rightarrow3y-y.cos2x=1+cos2x+sin2x\)

\(\Rightarrow sin2x+\left(y+1\right)cos2x=3y-1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(1^2+\left(y+1\right)^2\ge\left(3y-1\right)^2\)

\(\Leftrightarrow8y^2-8y-1\le0\)

\(\Rightarrow\frac{2-\sqrt{6}}{4}\le y\le\frac{2+\sqrt{6}}{4}\)

NV
8 tháng 9 2020

\(0\le cos^2x\le1\Rightarrow2\le3-cos^2x\le3\)

\(\Rightarrow\frac{8}{3}\le y\le4\)

\(y_{min}=\frac{8}{3}\) khi \(cosx=0\)

\(y_{max}=4\) khi \(cos^2x=1\)

b/ \(0\le sin^23x\le1\Rightarrow1\le\sqrt{2-sin^23x}\le\sqrt{2}\)

\(\Rightarrow\frac{1}{\sqrt{2}}\le y\le1\)

\(y_{min}=\frac{1}{\sqrt{2}}\) khi \(sin3x=0\)

\(y_{max}=1\) khi \(sin^23x=1\)

c/ \(y=\sqrt{3}\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x+1\)

\(=-\sqrt{3}\left(cos^2x-sin^2x\right)+sin2x+1\)

\(=-\sqrt{3}cos2x+sin2x+1\)

\(=2\left(\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\right)+1=2sin\left(2x-\frac{\pi}{3}\right)+1\)

Do \(-1\le sin\left(2x-\frac{\pi}{3}\right)\le1\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sin\left(2x-\frac{\pi}{3}\right)=-1\)

\(y_{max}=3\) khi \(sin\left(2x-\frac{\pi}{3}\right)=1\)

12 tháng 9 2021

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)

18 tháng 7 2020

Ta có: 

\(-1\le\sin2x\le1\)

=> \(\sqrt{4-2.\left(1\right)^5}-8\le\sqrt{4-2.\left(\sin2x\right)^5}-8\le\sqrt{4-2.\left(-1\right)^5}-8\)

=> \(\sqrt{2}-8\le\sqrt{4-2.\left(\sin2x\right)^5}-8\le\sqrt{6}-8\)

=> tìm ddc min và max

NV
20 tháng 8 2020

\(y=\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x+\frac{1}{2}=sin\left(2x+\frac{\pi}{6}\right)+\frac{1}{2}\)

Do \(-1\le sin\left(2x+\frac{\pi}{6}\right)\le1\Rightarrow-\frac{1}{2}\le y\le\frac{3}{2}\)

\(y_{min}=-\frac{1}{2}\) khi \(sin\left(2x+\frac{\pi}{6}\right)=-1\)

\(y_{max}=\frac{3}{2}\) khi \(sin\left(2x+\frac{\pi}{6}\right)=1\)

22 tháng 5 2021

2.Biểu thức luôn xác định

\(y=\dfrac{4}{\sqrt{5-2cos^2sin^2x}}=\dfrac{4}{\sqrt{5-\dfrac{1}{2}sin^22x}}\)

Có: \(1\ge sin^22x\ge0\)

\(\Leftrightarrow-\dfrac{1}{2}\le-\dfrac{1}{2}sin^22x\le0\)

\(\Leftrightarrow\dfrac{3\sqrt{2}}{2}\le\sqrt{5-\dfrac{1}{2}sin^22x}\le\sqrt{5}\)

\(\Rightarrow\dfrac{4\sqrt{2}}{3}\ge y\ge\dfrac{4\sqrt{5}}{5}\)

miny=\(\dfrac{4\sqrt{5}}{5}\) \(\Leftrightarrow sin2x=0\)\(\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\)

maxy=\(\dfrac{4\sqrt{2}}{3}\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{-\pi}{4}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

22 tháng 5 2021

1.Biểu thức luôn xác định

Xét \(sin2x=0\) \(\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\) khi đó \(y=-6\)

Xét \(sin2x\ne0\) 

=> \(1\ge sin^52x\ge-1\)

\(\Leftrightarrow4-1\le4-sin^52x\le4+1\)

\(\Leftrightarrow\sqrt{3}\le\sqrt{4-sin^52x}\le\sqrt{5}\)

\(\Leftrightarrow\sqrt{3}-8\le y\le\sqrt{5}-8\)

\(y=\sqrt{3}-8< -6\) , \(y=\sqrt{5}-8>-6\)

=>min= \(\sqrt{3}-8\) \(\Leftrightarrow sin2x=1\left(tm\right)\) \(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)

maxy=\(\sqrt{5}-8\)\(\Leftrightarrow sin2x=-1\left(tm\right)\) \(\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)

(câu này e ko chắc)

18 tháng 9 2021

\(y=sin\left(x+\dfrac{\pi}{3}\right)-sinx\)

\(=\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx-sinx\)

\(=\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\)

\(=cos\left(x+\dfrac{\pi}{6}\right)\in\left[-1;1\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{mịn}=-1\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\\y_{max}=1\Leftrightarrow x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)