Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a) Để Amin thì |3y+15|min
mà |3y+15| là giá trị tuyệt đối -> luôn luôn lớn hơn hoặc bằng 0
-> |3y+15|min = 0
-> 3y = -15
-> y = -5
Vậy GTNN của A=|3y+15| + 2 = 2
b) Để (2x + 2016 )2016min thì (2x+2016)min
mà 2x > 0, 2016 > 0 -> 2x+2016 sẽ lớn hơn hoặc bằng 0
-> (2x+2016)min=0
-> 2x = -2016
-> x = -1008
Vậy GTNN của B= (2x + 2016 )2016 = 0
vì /x+1/ và /y-1/ đều >0 nên /x+1/> 1 và (/x+1/;/y-1/)=(1;0)
Ta có:
+) x+1=1 => x=0
+) x+1=-1 => x=-2
+) y-1=0 => y=1
CÁC CÂU CÒN LẠI BẠN TỰ LÀM NHÉ!
\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(100=2x+4\)
\(\Leftrightarrow\)\(2x=96\)
\(\Leftrightarrow\)\(48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(49=x+1\)
\(\Leftrightarrow\)\(x=48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(B=\left|3x-7\right|-\left|3x+2\right|+8\)
Áp dụng tính chất:
\(\left|x\right|-\left|y\right|\le\left|x-y\right|\)
\(\left|3x-7\right|-\left|3x+2\right|\le\left|3x-7-3x-2\right|\)
\(B\le9+8=17\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-7\ge0\Rightarrow3x\ge7\Rightarrow x\ge\dfrac{7}{3}\\3x+2\ge0\Rightarrow3x\ge-2\Rightarrow x\ge\dfrac{-2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}3x-7< 0\Rightarrow3x< 7\Rightarrow x< \dfrac{7}{3}\\3x+2< 0\Rightarrow3x< -2\Rightarrow x< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\ge\dfrac{7}{3}\) hoặc \(x< -\dfrac{2}{3}\)
Toshiro Kiyoshi bạn nói là nếu cả 2 số đều lớn hơn thì chọn số lớn hơn. Vì \(\dfrac{7}{3}>\dfrac{-2}{3}\) nên mk chọn là \(\dfrac{7}{3}\)Nhưng nếu \(x=2\) thì sao ?
Số đó \(< \dfrac{7}{3}\)
??????????????