Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(B=\frac{x^2-2x+2016}{x^2}\Rightarrow2016B=\frac{2015x^2+\left(x^2-2.2016x+2016^2\right)}{x^2}=2015+\frac{\left(x-2016\right)^2}{x^2}\ge2015\)
Dấu "=" xảy ra khi \(\frac{\left(x-2016\right)^2}{x^2}=0\Rightarrow x=2016\)
\(\Rightarrow2016B_{min}=2015\Rightarrow B_{min}=\frac{2015}{2016}\) khi \(x=2016\)
a/ B=\(\frac{2}{-x^2+6x-12}=\frac{2}{-\left(x-3\right)^2-3}\ge\frac{-2}{3}\) dau bang khi x =0
giúp e vs các a cj soyeon_Tiểubàng giải
Phương An
Hoàng Lê Bảo Ngọc
Nguyễn Huy Tú
Silver bullet
Nguyễn Như Nam
Nguyễn Trần Thành Đạt
Nguyễn Huy Thắng
Võ Đông Anh Tuấn
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)
Vậy \(P_{min}=-7\) khi x = 2
a)đkxđ: \(x+1\ne0\Leftrightarrow x\ne-1\)
\(B=\frac{x^2-x+1}{x^2+2x+1}=\frac{x^2+2x+1-3x}{x^2+2x+1}=1-\frac{3x}{\left(x+1\right)^2}=1-\frac{3\left(x+1\right)-3}{\left(x+1\right)^2}\)
\(B=1-\frac{3}{x+1}+\frac{3}{\left(x+1\right)^2}\)
Đặt \(\frac{1}{x+1}=a\)\(\Rightarrow B=3a^2-3a+1=3\left(a^2-a+\frac{1}{3}\right)=3\left(a^2-2a.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow B\ge\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=\frac{1}{2}\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}\Leftrightarrow x+1=2\Leftrightarrow x=1\left(nhận\right)\)
Vậy GTNN của B là \(\frac{1}{4}\)khi \(x=1\)
b) đkxđ \(x-1\ne0\Leftrightarrow x\ne1\)\(E=\frac{3x^2-8x+6}{x^2-2x+1}=\frac{3\left(x^2-2x+1\right)-2x+3}{x^2-2x+1}=3-\frac{2x-3}{\left(x-1\right)^2}=3-\frac{2\left(x-1\right)-1}{\left(x-1\right)^2}\)
\(=3-\frac{2}{x-1}+\frac{1}{\left(x-1\right)^2}\)
Đặt \(\frac{1}{x-1}=b\)\(\Rightarrow E=b^2-2b+3=b^2-2b+1+2=\left(b-1\right)^2+2\)
Vì \(\left(b-1\right)^2\ge0\Leftrightarrow B\ge2\)
Dấu "=" xảy ra khi \(b-1=0\Leftrightarrow b=1\Leftrightarrow\frac{1}{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\left(nhận\right)\)
Vậy GTNN của B là 2 khi x = 2
\(B=\dfrac{x^2-2x+2016}{x^2}\\ \\ =\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{2016}{x^2}\\ \\ =1-\dfrac{2}{x}+\dfrac{2016}{x^2}\\ =\dfrac{2016}{x^2}-\dfrac{2}{x}+\dfrac{1}{2016}+\dfrac{2015}{2016}\\ =\left(\dfrac{2016}{x^2}-\dfrac{2}{x}+\dfrac{1}{2016}\right)+\dfrac{2015}{2016}\\ =2016\left(\dfrac{1}{x^2}-\dfrac{1}{1008x}+\dfrac{1}{2016^2}\right)+\dfrac{2015}{2016}\\ =2016\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2+\dfrac{2015}{2016}\)
Do \(2016\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2\ge0\forall x\)
\(\Rightarrow B=2016\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2+\dfrac{2015}{2016}\ge\dfrac{2015}{2016}\forall x\)
Dấu "=" xảy ra khi:
\(2016\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2=0\\ \Leftrightarrow\dfrac{1}{x}-\dfrac{1}{2016}=0\\ \Leftrightarrow\dfrac{1}{x}=\dfrac{1}{2016}\\ \Leftrightarrow x=2016\)
Vậy \(B_{Min}=\dfrac{2015}{2016}\) khi \(x=2016\)
x khac 0
Bx^2=x^2-2x+2016
(1-B)x^2-2x+2016=0
\(\Rightarrow\Delta=1-4.\left(1-B\right).2016\ge0\Rightarrow1-4.2016+4.2016B\ge0\)
\(B\ge\frac{4.2016-1}{4.2016}=1-\frac{1}{4.2016}\)
GTNN(B)=1-1/(4.2016)
bắt hết các loại gió mùa