K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

\(A_{min}=8-\frac{25}{4}\) khi x=5/2

Bmin=xem lại đề đúng như đề Bmin=5 khi x=0

C=8+25-(2x+5)^2

Cmax=8+25 khi x=-5/2 

Dmax=9 khi x=0

18 tháng 1 2017

Cụ thể mức nào nhỉ tất cả dự trên HĐT \(\left(a+-b\right)^2=a^2+-2ab+b^2\)

cụ thể con A

\(A=x^2-2.\frac{5}{2}x+\left(\frac{5^2}{2^2}\right)+8-\frac{25}{4}\) đã thêm 25/4 =b vào phần đầu => trừ đi 

\(A=\left(x-\frac{5}{2}\right)^2+8-\frac{25}{4}=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}\)

\(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow A\ge\frac{7}{4}\)đẳng thức khi x-5/2=0=> x=5/2

18 tháng 1 2017

A=(x-5/2)^2+8-25/4=> Amin=7/4 khi x=5/2

B --> xem lại theo đề Bmin =5 khi x=0

C =8+25-(2x+5)^2=> C max=32 khi x=-5/2

D max=9 khi x=0

16 tháng 7 2019

\(C=-4x^2+9x+7=-\left[\left(2x\right)^2-9x-7\right]\)

\(=-\left[\left(2x\right)^2-2.2,25x+5,0625-12,0625\right]\)

\(=-\left[\left(2x-2,25\right)^2-12,065\right]=-\left(2x-2,25\right)^2+12,0625\)

Ta có: \(\left(2x-2,25\right)^2\ge0\)\(\Leftrightarrow-\left(2x-2,25\right)^2\le0\)\(\Leftrightarrow-\left(2x-2,25\right)^2+12,0625\le12,0625\)

Vậy \(C_{max}=12,0625\)(Dấu "="\(\Leftrightarrow x=1,125\))

16 tháng 7 2019

C= -4x2 +9x+7

Giải phương trình trên máy tính rồi ấn 3 lần dấu ' = ' để tìm GTLN

KQ : Max C = \(\frac{9}{8}\)

D=-3x2-7x+12

Giải phương trình trên máy tính rồi ấn 3 lần dấu ' = ' để tìm GTLN

Max D = \(-\frac{7}{6}\)

Không có Min đâu nhé bạn

16 tháng 6 2017

Bài 1:

a) \(6x\left(3x+15\right)-2x\left(9x-2\right)=17\) (1)

\(\Leftrightarrow18x^2+90x-18x^2+4x=17\)

\(\Leftrightarrow94x=17\)

\(\Leftrightarrow x=\dfrac{17}{94}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{17}{94}\right\}\)

b) \(\left(15x-2x\right)\left(4x+1\right)-\left(13x-4x\right)\left(2x-3\right)-\left(x-1\right)\left(x+2\right)+x+2=52\)

\(\Leftrightarrow\left(60x^2+15x-8x^2-2x\right)-\left(26x^2-39x-8x^2+12x\right)-\left(x^2+2x-x-2\right)+x+2=52\)

\(\Leftrightarrow60x^2+15x-8x^2-2x-26x^2+39x+8x^2-12x-x^2-2x+x+2+x+2=52\)

\(\Leftrightarrow33x^2+40x+4=52\)

\(\Leftrightarrow33x^2+40x=48\)

...

17 tháng 6 2017

Bài 1 có ng làm rồi nên mình không làm nx nhé.

2) a) Rút gọn

P=\(3x\left(4x+1\right)+5x^2-4x\left(3x+9\right)+x\left(5x-5x^2\right)\)

P= \(12x^2+3x+5x^3-12x^3-36x+5x^2-5x^3\)

P= \(-33x\)

b) |x| = 2

\(\Rightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Với x = 2 \(\Rightarrow\) P = -33 . 2 = -66

Với x = -2 \(\Rightarrow\) P = -33 . (-2) = 66

c) Để P = 2017 \(\Rightarrow\) -33x = 2017 \(\Rightarrow\) x = \(-\dfrac{2017}{33}\)

Bài 3: Giải

f(x) = \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

f(x) = \(\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

f(x) = \(\left(x^2+5x\right)^2-6^2\) ( Hằng đẳng thức số 3 )

f(x) = \(\left(x^2+5x\right)^2-36\ge-36\) với mọi x

Vậy \(Min_{f\left(x\right)}\) = -36 khi x = 0 hoặc x = -5

Bài 1:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\)

Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn