K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2020

ĐKXĐ: \(x\ge2\)

\(S=-\frac{1}{2}\left(x-1-2\sqrt{x-2}+x+5-4\sqrt{x+1}\right)+12\)

\(=-\frac{1}{2}\left[\frac{\left(x-3\right)^2}{x-1+2\sqrt{x-2}}+\frac{\left(x-3\right)^2}{x+5+4\sqrt{x+1}}\right]+12\le12\)

\(S_{max}=12\) khi \(x=3\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

18 tháng 9 2017

câu 1 

ta có .....

lười viết Min - cốp xki nha

18 tháng 9 2017

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

8 tháng 4 2016

Khó quá, tớ mới học lớp 5 thôi.

5 tháng 6 2020

Ta có BĐT sau: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Áp dụng, ta được: \(\left(\sqrt{x^2+1}+\sqrt{2x}\right)^2\le2\left(x^2+1+2x\right)=2\left(x+1\right)^2\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)(1)

Tương tự, ta có: \(\sqrt{y^2+1}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)(2); \(\sqrt{z^2+1}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)(3)

Theo BĐT Cauchy-Schwarz, ta được: \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le\left(1+1+1\right)\left(x+y+z\right)\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\)

\(\Rightarrow\left(2-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\)(Nhân 2 vế của bất đẳng thức với \(2-\sqrt{2}>0\))           (4)

Cộng theo vế của 4 BĐT (1), (2), (3), (4), ta được:

\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}+\left(\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\right)\)\(+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)-\left(\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\right)\)\(\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\)

\(\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)(Do theo giả thiết thì \(x+y+z\le3\))

hay \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le6+3\sqrt{2}\)

Đẳng thức xảy ra khi x = y = z = 1

Vậy giá trị lớn nhất của biểu thức là \(6+3\sqrt{2}\), đạt được khi x = y = z = 1