\(\dfrac{1}{x^2+3x+7}\)

B=\(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

\(A=\dfrac{1}{x^2+3x+7}=\dfrac{1}{\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{19}{4}}=\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}}\le\dfrac{1}{\dfrac{19}{4}}=\dfrac{4}{19}\)\(\Rightarrow Max_A=\dfrac{4}{19}\Leftrightarrow x=-\dfrac{3}{2}\)

\(B=\sqrt{4-x^2}\le\sqrt{4-0^2}=\sqrt{4}=2\)

\(\Rightarrow Max_B=2\Leftrightarrow x=0\)

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

9 tháng 9 2017

\(b,Q=-5x^2-4x+1\)

\(=-5\left(x^2+\dfrac{4}{5}x+\dfrac{4}{25}\right)+\dfrac{9}{5}\)

\(=-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\)

Với mọi giá trị của x ta có:

\(-5\left(x+\dfrac{2}{5}\right)^2\le0\)

\(\Rightarrow-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\le\dfrac{9}{5}\)

Vậy MaxQ = \(\dfrac{9}{5}\)

Để Q = \(\dfrac{9}{5}\) thì \(x+\dfrac{2}{5}=0\Rightarrow x=-\dfrac{2}{5}\)

\(c,K=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)

\(=x\left(x-7\right)\left(x-3\right)\left(x-4\right)\)

\(=\left(x^2-7x\right)\left(x^2-7x+12\right)\)

Đặt \(x^2-7x+6=t\) , ta có:

\(K=\left(t-6\right)\left(t+6\right)\)

\(=t^2-36\)

\(=\left(x^2-7x+6\right)^2-36\)

Với mọi giá trị của x ta có:

\(\left(x^2-7x+6\right)^2\ge0\Rightarrow\left(x^2-7x+6\right)^2-36\ge-36\)

Vậy Min K = -36

Để K = - 36 thì \(x^2-7x+6=0\)

\(\Leftrightarrow x^2-x-6x+6=0\)

\(\Leftrightarrow x\left(x-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

a)\(P=2x^2-8x+1\)

=\(2\left(x^2-4x+4\right)-7\)

=\(2\left(x-2\right)^2-7\)

Với mọi x thì \(2\left(x-2\right)^2>=0\)

=>\(2\left(x-2\right)^2-7>=-7\)

Hay \(P>=-7\) với mọi x

Để \(P=-7\) thì

\(\left(x-2\right)^2=0\)

=>\(x-2=0\)

=>\(x=2\)

Vậy...

Các câu sau tương tự

28 tháng 2 2017

a. Ta có:\(P\left(x\right)=\dfrac{2x^2-2x+3}{x^2-x+2}=\dfrac{2x^2-2x+4-1}{x^2-x+2}=2-\dfrac{1}{x^2-x+2}\)

Để \(P\left(x\right)\) đạt GTLN thì \(\dfrac{1}{x^2-x+2}\)đạt GTNN

\(\Rightarrow x^2-x+2\) đạt GTNN.

Ta có: \(x^2-x+2=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(\Rightarrow P\left(x\right)=2-\dfrac{1}{x^2-x+2}\ge\dfrac{10}{7}\)

Dấu '' = '' xảy ra khi: \(x=\dfrac{1}{2}\)

Vậy: GTNN của \(P\left(x\right)=\dfrac{10}{7}\) tại \(x=\dfrac{1}{2}\).

28 tháng 2 2017

\(\dfrac{2\left(x^2-x+2\right)-1}{x^2-x+2}=2-\dfrac{1}{x^2-x+2}\)

ta có \(x^2-x+2=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\) (vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) )

Do đó \(\dfrac{1}{x^2-x+2}\ge\dfrac{1}{\dfrac{7}{4}}=\dfrac{4}{7}\)

Nên P\(\ge2-\dfrac{4}{7}=\dfrac{10}{7}\)

Vậy Min P(x)=\(\dfrac{10}{7}\)

29 tháng 3 2017

a/ \(M=\dfrac{x^2-x+1}{x^2+2x+1}=\dfrac{1}{4}+\dfrac{3x^2-6x+3}{x^2+2x+1}=\dfrac{1}{4}+\dfrac{3\left(x-1\right)^2}{x^2+2x+1}\ge\dfrac{1}{4}\)

b/ \(N=\dfrac{3x^2+4x}{x^2+1}=4-\dfrac{x^2-4x+4}{x^2+1}=4-\dfrac{\left(x-2\right)^2}{x^2+1}\le4\)

21 tháng 6 2020

https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này

10 tháng 7 2020

Áp dụng BĐT Cauchy cho 2 số không âm ta có : 

\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)

Đẳng thức xảy ra khi và chỉ khi \(a=4\)

Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)

15 tháng 4 2018

a)

\(A=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(A-2=-\dfrac{3}{x^2-8x+22}=-\dfrac{3}{\left(x-4\right)^2+6}\ge-\dfrac{3}{6}=-\dfrac{1}{2}\)

\(A\ge\dfrac{3}{2}\) khi x =4