Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Bài 1:
a. A = x^2 - 5x - 1
\(=x^2-5x+\frac{25}{4}-\frac{29}{4}\)
\(=x^2-5x+\left(\frac{5}{2}\right)^2-\frac{29}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{29}{4}\ge0-\frac{29}{4}=-\frac{29}{4}\)
Dấu = khi x=5/2
Vậy MinC=-29/4 khi x=5/2
2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 )( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )
=>4x2-12x+9+1-16x2=-14x2+13x-3
=>-12x2-12x+10=-14x2+13x-3
=>2x2-25x+13=0
\(\Rightarrow2\left(x-\frac{25}{4}\right)^2-\frac{521}{8}=0\)
\(\Rightarrow\left(x-\frac{25}{4}\right)^2=\frac{521}{16}\)
\(\Rightarrow x-\frac{25}{4}=\pm\sqrt{\frac{521}{16}}\)
\(\Rightarrow x=\frac{25}{4}\pm\frac{\sqrt{521}}{4}\)
c. 4.( x - 3 ) - ( x + 2 ) = 0
=>4x-12-x-2=0
=>3x-14=0
=>3x=14
=>x=14/3
Câu a nhé: 2x . x^2 - 2x . 7x - 2x . 3 = 2x^3 - 14x^2 - 6x
a) \(3x^2-3y^2-x-y\)
\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)
\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(\Leftrightarrow3\left(x-y\right)\)
d) \(3x^2-7x+4\)
\(\Leftrightarrow3x^2-7x+7-3\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)
\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)
e) \(-2x^2+3x-1\)
\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)
\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)
f) \(x^2+2xy+y^2-2x-2y\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
k) \(2x^2+5x+3\)
\(\Leftrightarrow2x^2+2x+3x+3\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)
l) \(x^2-2x-y^2+1\)
\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2\)
\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)
a) \(3x^2-3y^2-x-y\)
\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)
\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(\Leftrightarrow3\left(x-y\right)\)
d) \(3x^2-7x+4\)
\(\Leftrightarrow3x^2-7x+7-3\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)
\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)
e) \(-2x^2+3x-1\)
\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)
\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)
f) \(x^2+2xy+y^2-2x-2y\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
k) \(2x^2+5x+3\)
\(\Leftrightarrow2x^2+2x+3x+3\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)
l) \(x^2-2x-y^2+1\)
\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2\)
\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)
\(B=3x^2+3x-1\)
\(=3\left(x^2+x-\dfrac{1}{3}\right)\)
\(=3\left(x^2+x+\dfrac{1}{4}-\dfrac{7}{12}\right)\)
\(=3\left(x+\dfrac{1}{2}\right)^2-\dfrac{7}{4}>=-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x+1/2=0
=>\(x=-\dfrac{1}{2}\)
\(C=-2x^2+7x+3\)
\(=-2\left(x^2-\dfrac{7}{2}x-\dfrac{3}{2}\right)\)
\(=-2\left(x^2-2\cdot x\cdot\dfrac{7}{4}+\dfrac{49}{16}-\dfrac{73}{16}\right)\)
\(=-2\left(x-\dfrac{7}{4}\right)^2+\dfrac{73}{8}< =\dfrac{73}{8}\forall x\)
Dấu '=' xảy ra khi x-7/4=0
=>x=7/4