Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Ta thấy:
\(\Delta=(5m-1)^2-4(6m^2-2m)=m^2-2m+1=(m-1)^2\geq 0\) với mọi $m$
Do đó pt đã cho luôn có nghiệm với mọi $m$
b) Áp dụng định lý Viete, với $x_1,x_2$ là nghiệm thì:
\(\left\{\begin{matrix} x_1+x_2=5m-1\\ x_1x_2=6m^2-2m\end{matrix}\right.\)
Do đó: \(x_1^2+x_2^2=1\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=1\)
\(\Leftrightarrow (5m-1)^2-2(6m^2-2m)=1\)
\(\Leftrightarrow 13m^2-6m+1=1\)
\(\Leftrightarrow 13m^2-6m=0\Rightarrow \left[\begin{matrix} m=0\\ m=\frac{6}{13}\end{matrix}\right.\)
\(\Delta=b^2-4ac\)
\(\Delta=\left(3m-2\right)^2-4.2.\left(2m-5\right)=9m^2-12m+4-16m+40\)
\(\Delta=9m^2-28m+44\)
Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta\ge0\Leftrightarrow9m^2-28m+44\ge0\left(lđ\right)\)
theo vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{b}{a}=\dfrac{3m-2}{2}\left(1\right)\\x_1.x_2=-\dfrac{c}{a}=\dfrac{5-2m}{2}\left(2\right)\end{matrix}\right.\)
ta có \(3x_1+2x_2=0\left(3\right)\)
từ (1)(3) ta có hệ
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3m-2}{2}\\3x_1+2x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=3m-2\\3x_1+2x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-3m\\x_2=-\dfrac{3}{2}x_1\end{matrix}\right.\)(lấy dưới trừ trên)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-3m\\x_2=-\dfrac{3}{2}\left(2-3m\right)\end{matrix}\right.\)
ta có \(x_1.x_2=\dfrac{5-2m}{2}\)
\(\Leftrightarrow-\dfrac{3}{2}\left(2-3m\right)\left(2-3m\right)=\dfrac{5-2m}{2}\)
\(\Leftrightarrow-3\left(9m^2-12m+4\right)=5-2m\)
\(\Leftrightarrow-27m^2+36m-12=5-2m\)
\(\Leftrightarrow-27m^2+38m-17=0\) ( vô lý)
vậy pt vô nghiệm
Δ=(4m+2)^2-4(3m^2+6m)
=16m^2+16m+4-12m^2-24m=4m^2-8m+4=(2m-2)^2
=>Phương trình luôn có 2 nghiệm
x1+2x2=16 và x1+x2=4m+2
=>x2=16-4m-2 và x1+2x2=16
=>x2=-4m+14 và x1=16+8m-28=8m-12
x1x2=3m^2+6m
=>-32m^2+48m+112m-168=3m^2+6m
=>m=12/5 hoặc m=2